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Closed-loop critical curves in simple hard-sphere van der Waals-fluid
models consistent with the packing fraction limit
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Two new hard-sphere equations are proposed which, in combination with a van der Waals attraction
term, lead to a biquadratic, respectively a cubic, equation of state. The new equations show the
correct limiting behavior at low as well as at high densities; their poles are close to the physical
packing fraction of hard spheres. Both equations of state were extended towards mixtures by
one-fluid mixing rules, and their global phase behavior was investigated for the special case of
equal-sized molecules. Both equations are able to predict closed-loop liquid—liquid immiscibility;
the topology of the phenomenenon is the same as for the Carnahan—Starling equation. It appears the
occurrence of closed-loop liquid—liquid immiscibility does not depend on the location of the pole
nor on the degree of the equation of state used. 1999 American Institute of Physics.
[S0021-960609)51606-]

I. INTRODUCTION for the existence of closed loops in the CSvdW model and
how the closed-loop behavior changes, when the correct
Because closed-loop liquid—liquid immiscibility has packing fraction limit is included in the model.
been experimentally detected in strongly polar mixtures
only, it has been attributed to hydrogen bonding for many
years. Thus the early work of Boshkbwyho first demon- Il. THEORY

strated that this phenomenon could be obtained with an equa- The CS equation is an accurate equation of state for the

tion of state for the nonpolar Lennard-Jones fluid, was mef,, 4 sphere fluid, but since it had been developed in the low
with doubt. Meanwhile the phenomenon could be found foryengiry fimit it does not incorporate the correct high density
ot_h_er equations of state for nonp(_)Iar fluids, such as the simy; i |n Fig. 1 the dependence of the the compressibility
p"f'ef’ perturbed hard chain equgt?or.] or the factorZ=pV,,,/RT on the packing fraction is shown for the
Redlich—Kwond equation. In a recent publicatibwe have van der Waals repulsiofydWR) Z 4= 1/(1— 4y) and the
shown that the attractive hard sphere fluid, modeled by the.g equationZee= (1+y+y2—y3)/(1—y)3. The largest
Carnahan-Starling van der Waals equa'non.of'@f"a(ézs.- _ possible packing fraction should be 0[#ose packing face-
vdW) is able to produce closed-loop liquid—liquid immisci- centered-cubidfcc) lattice] or slightly less(random close
bility, too. _ _ packing. But evidently the vdwW equation yields a too low
In contrast to this, the van der Waals equatiedW) is  5ximal packing fraction Yooie=0.25), whereas the maxi-
known to show no closed-loop liquid—liquid immiscibility. 4 packing fraction of the CS equation is 00 higfpde
The reason for this qualitatively different behavior is still not _ 1).” The value of the packing fraction at the pole is deter-

completely understood. It has been suggested that the locgsineq by the values of the coefficierss, of the virial ex-
tion of the poles of the equations of state might be respOnpansion ofZ

sible for the difference, and—since the CSvdW equation has .
its pole at too high densities—that therefore the closed-loop 721+ B m !
immiscibility obtained with this equation might be an arti- - +m=l m+1Y" @
fact.

Another reason for the qualitative differences betweerl" Table I the virial coefficients of the van der Waals repul-

the vdW and the CSvdW equation might be the cubic natur&1on term(vdWR) and the CS equation are compared with
of the former as opposed to the quintic nature of the latter.the results obteaerlged by a Monte CaxIC) integration by
In this article we investigate the qualitative and quanti-R€€ and Hoover." The virial coefficients of the vdWR equa-

dWR_ 4i—1y ; . .
tative dependence of the closed-loop phenomenon on the I§on (B™""=4""") increase too strongly with thus causing
cation of the pole and on the degree of the equation of staté! {00 Ioggypo,e_ value. The V|2r|al coefficients of the CS equa-
We intend to give an answer to the question if the pole of thdion [Bi“=3(i—1)+(i—1)7] are in good agreement with

CS equation aypqe=1 with y=(7/6)a3(N/V) is the reason the Monte Carlo results up -, but the higher virial coef-
ficients do not increase strongly enough in order to place the

ole at the correct close packing value. Generally the pack-
dpermanent address: Thermodynamics Center, Academy of Refrigeratiorﬁ,‘g fraction at the pole of a hard sphere equation is related to
1/3 Dvoryanskaya Str., 270026 Odessa, Ukraine. L. h . g
bAuthor to whom correspondence should be addressed; electronic maif€ limiting behavior of the virial coefficients by the expres-
kraska@stthd0.pc.uni-koeln.de sion (see the Appendijx
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400 , and the MC values up to approximately 5. Higher virial
z | coefficients of Eq(3) increase stronger than the CS values.
300 | i The equation of state employed here for the calculation
; of phase equilibria consists of E() and the van der Waals
200 | ! mean field attraction term
RT[ 3+5y+6y? a @
100 | PVl Ty (E=ay)| V2’
0 J A In this equation of state the packing fraction is related to the
0.0 0.2 04 0.6 0.8 1.0 covolume parameten by y=b/4V,,. If we define reduced
y variables
FIG. 1. Compressibility factaZ as function of the packing fractionfor the _ 8RD 8p?
vdWR equation, the CS equation, and E8). The pole for each equation is T= TT' P= ? p, (5)

indicated by a dashed line.

the critical properties can be expressedyas0.130082 08,
T.=3.01633614, P.=0.563927 9775, Z.=0.359 307 63.
= Ypole- (20 These values can be used for the calculation of the equation
of state parametes andb from the critical temperaturé,
Equation(2) can be understood as a guideline for the con-and critical volumeV,, . of a substance. The values of the
struction of the higher virial coefficients, which cannot bereduced critical values of Eq4) are very close to those of
obtained by numerical integration. One can distinguish twadhe CSvdW equation of statey=0.130443884, T,
types of repulsion terms depending on the behavior of=3.01851850, P.=0.5653521211, Z,=0.358 956 21).
B,/Bm+1 as function of m: For vdWR-like equations This is not surprising, since the differences between the CS-
Bm/Bm+1 is constant and always equalytg,e=1/4, for CS-  vdW equation and Ed4) are important at packing fractions
like equationsB,,/Bn,. 1 is a nonlinear function ofn, and it  much higher than the critical packing fraction only.
is necessary to compute the limit for infinite in order to Rearranging Eq4) leads to a fourth order polynomial in
obtainype= 1. the molar volume,

i Bm
im | =

m+1

m—oe

24pVi — (14bp+24RT)V3 + (2b%p— 10bR T+ 24a)

A. Madification of the CS equation )
X V& —(3b°RT+ 1dba)V,,+2ab’=0,  (6)

We have introduced the nearly correct pole packing frac-
tion at 3/4 by multiplying the CS equation with (3 Wwhich is one order higher than the cubic van der Waals equa-
—4y)/(3—4y) and shifting the value of the coefficient of tion and one order lower than the fifth order Carnahan—
the y* term in the resulting equation from 4.0 to 6.0. As Starling—van der Waals equation. It is therefore possible to
result we obtained the following equation for the hard spherealculate the molar volume from the pressure with &.
fluid: analytically®

3+5y+6y?
7o STOYTOY 3)
(1-y)(3—4y) o .
B. Modification of the vdWR equation

The pole of this equation is §t=0.75, which is very close to o ) )

the value of the close packing fraction. Comparison of Eq,  1ne derivation of Eq(3) is based on the CS equation. It
(3) with simulation results of the hard sphere fluid show!S also possible to start from the vdWR equation and extend
good agreement. The virial coefficientd B,=27/2 it with respect to the correct close packing fraction. We have

" I

X (4/3) ~1—14] listed in Table | are close to the CS values deriyed an equation which is designed to fulfill the following
requirements:

TABLE |. Comparison of the repulsive virial coefficients of the van der (a) the Secor_]d virial coefficient is alwaﬁzz4;

Waals equatioivdWR), the Carnahan—Starling equatit®S), Monte Carlo (b) the pole is ay poie= 1/ poles

results of Ree and HoovéRefs. 8, 9 (MO), and Eqgs(3) and (7). (©) for foge=4 (Ypole=0.25) the equation degenerates to
the vdWR equation;

Virial coefficient B f0. (d)  for fpoie=4/3 (Ypore=0.75) the third virial coefficient is
i vaw  CS MC EQ3)  With fooe—4/3 exact atB;=10.
2 4 4 4 4 4 The parametef ;. can be used to move the pole of the
3 16 10 10 10 10 vdWR equation towards the physical limit of close packing
4 64 18 18.36 18 13.33 and to decrease the value of the third virial coefficient.
5 256 28 28.240.08 28.67 17.78
6 1024 40  39.520.53 42.89 23.70 foole| »
7 4006 54 5652164 61.85 31.60 1+ (4= fpoy +7| 1= =~y
8 16384 70 [80.28, 95.03  87.14 42.14 7= _ @)
1- fpoley
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15 X
z — — - vdWR
-------- cs
eqn 3
10 | —-— ean7.f,,=4/3
X MC data
FIG. 2. Boundary states in binary phase diagrams. The dashed lines are the 5
vapor pressure curves of the pure substan@slegenerated critical pres-
sure maximunm(dCPM); (b) critical pressure step poit€PSB; (c) double
critical end point(DCEP); and (d) tricritical point (TCP). 0 . .
0.0 0.2 0.4

The virial coefficients of this equation areB;=(7  FIG. 3. Comparison of the compressibility factor obtained with the vdWR
+9/4fpol9)flp;|?é for i=3. They are listed in Table | fOfpole equation, the CS equation, E¢B), Eq. (7), and Monte Carlo results of
= 4/3. This family of equations is of vdWR type in two re- Barker and HendersofRef. 17.

spects:

(8 if combined with the vdW attraction it yields a cubic 1heSe regions are separated by boundary lines which are
equation of state in the molar volume: higher order thermodynamic states and can be calculated by

(b) it has constant values f@,,/B . ;. numerically solving the corresponding analytically available

. _ S thermodynamic conditions. For a detailed discussion of the
Inserting f,e=4/3 into Eq.(7) and combining it with the  poundary states related to the closed-loop behavior see Ref.

van der Waals attraction yields the equation of state 4. In Fig. 2 the boundary states related to the appearance of
RT/(3+8y+14y? a the closed-loop liquid—liquid immiscibility are shown in the
p= V_m w RV (8) correspondingp—T projection of the binary phase diagrams.
m
Equation(8) can be rearranged to its cubic form lll. RESULTS

3 2 A. Hard-sphere fluid

—=3pV,t(3RT+pb)V;,+(2RTb—3a)V,+ab

. Figure 3 shows a comparison of the compressibility fac-
+§RTE=0. (9 tor of Eq.(3) with Z¢s and results obtained by Monte Carlo

The critical properties of Eq(8) are y.=0.138 692 407 simulation by Barker and HendersbhThe comparison of
—3.091 635 97],=0.609 271 360 9 acnd ~0.355 230’16 the pair correlation function at contact corresponding to Eq.
. Me . y c . .

As Eq.(6), Eq. (9) can be solved analytically. )
C. Extension to mixtures - 3+yl2 13
9= T3 ay) 13
For the investigation of the binary phase behavior Egs.
(4) and (8) have been extended by usual quadratic mixingand Eq.(7)
rules. Since we focus here on equal sized spheres only, we 14 (1= 1§ )
haVeb: b11: b22: b12 and - w 14
o(o — (14
2 2 1 poley
a=> > XiX;aj; . (100  and from Monte Carlo simulation data is shown in Fig. 4.
i=1j=1

Both comparisons show that E() is in very good agree-
The method of the investigation of the phase behavior ofent with the simulation data up $o=0.4. For highey Eq.
binary mixtures employed here has been introduced by vaf®) gives slightly larger values than the simulation and the
Konynenburg and Scott:'? It has been further developed

recently in many article$>~® The axes of a global phase 8 :
diagram are reduced differences of the equation of state pa- g0) | ==
rameters T e cs
6r eqn 13
—2d-+ — 14,1,,=4/3
= M’ (11) x:/lqg data
dootdyg 4 /
dpp— iy
= 0. 12 2
dpotdyy 12
Here dj;=T;bj; /bjibj; is the interaction density and} 0 . .
=a;;/Rb; the characteristic temperature. For equal sized 0.0 0.2 0.4
spheres thel;; can be replaced by;; in the definitions of the y

g!Obal parametera a'_"d {. The regions _Of the global phas? FIG. 4. Comparison of the pair correlation function at contact obtained with
diagram represent different types of binary phase behavioEq.(3), Eq.(7), and Monte Carlo results of Barker and Henderé&Ref. 17.
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-——-eqn4 0.5;
VW 0.4+
' 0.3f
0.2}
0.1
A

O 3 a1 5 0 1 } d0'1
0.0 1.0 2.0 3.0 40 01 C 010203 04 05
p/p, 05
FIG. 5. Comparison of the coexistence curve of a pure substance obtained 04
with the CS equation, Eq4), and Eq.(8) with f.=4/3. 0,3
0,2t
CS term. But since Eq3) includes the high density limit 0.1
very close to the close packing value the values of @. A
and the simulation data are expected to approach each other Y RN
at higher packing fraction. This of course neglects the glassy 041 & 0102030405
state found ay=0.61® as all fluid equations of state neglect 05 v RN

solid phases.

Equation(7) shows larger deviations from the MC data 0.4r
than Eqg.(3), but it is still a reasonable model for the hard 0.3V
sphere fluid. For any value df, it is certainly a better 0.2l
approximation than the vdWR equation. The inferior agree- ’
ment of its virial coefficients with the exact values is due to 0.1
the simplification of the equation structure to a cubic equa- A
tion of state[Eq. (7)]. Pl A
B. Phase equilibria of pure fluids 01§ 0102030405

Figure 5 shows a temperature density plot of the coexFIG. 6. Global phase diagram calculated with different equations of state.
istence curve for the CSvdW equation in comparison WithI)%‘:): ri;gﬁ“gg?& ?’_'d)dtlfégg‘}();_b)o?gg’z’ft_"_")"fé%”g;:?“f;‘;égﬁj{f’f?d'
t_he b'qua_dratlc ECKA)'_ the cubic _Eq(S)’ and the VU_'W _equa' _azeotrope boundary line¢-—) geometric mean lineag,= \aia,,), (+)
tion. Obviously the differences in the saturated liquid densivan Laar point.
ties between Eqg4), (8), and CSvdW are small. Equation
(4) shows a slight decrease of the liquid density as compared
to the CSvdW model. The saturated liquid densities calcuand changes to typ¥,. At the dCPM the liquid—liquid
lated with Eq.(8) at T/T.>0.3 are slightly larger than CS- critical line changes its slope and directionTat0 K and
vdW liquid densities. Both new equations show a very goodherefore produces an extreme in the liquid—liquid critical
agreement of the saturated vapor densities with those of tHée. The triangle-like closed-loop region is divided into
CSvdW equation. three parts by two more boundary lines. At the DCEP line
[Figure 2c)] a binary critical line touches the three-phase
line and typeV,, changes to type VII. At the tricritical line
[TCP, Fig. 2d)] the three-phase line interrupting the liquid

In order to investigate the influence of the different re-gas critical line shrinks to a point, and type VII changes to
pulsions terms on the binary phase behavior we have calcuype VI.
lated the global phase diagrams for the biquadratic and the Most parts of the global phase diagrams are very similar
cubic equations and compared it with the global phase diafor all three equations. The region which is most sensitive to
gram obtained with the CSvdW equatibrSections of the the changes in the the repulsive virial coefficients is the
global phase diagrams showing all important regions of biclosed-loop region. Figure 6 show the closed-loop regions
nary phase diagrams, are plotted in Fig. 6. Thel dia- for the biquadratic and the cubic equation of state. The
grams corresponding to the boundary curves plotted in Fig. 6losed-loop behavior obtained with the biquadratic equation
are shown in Fig(2). The closed-loop region obtained with is topologically identical to the behavior obtained with the
the CSvdW equatidHFig. 6 (top)] is surrounded by the two CSvdW equatiorf. These two equations differ only in the
branches of the critical pressure step point [iG®SP, Fig. absolute position and size of the closed-loop region. They
2(b)], one branch of the double critical end point line both produce the binary phase diagram typgs VII, and
[DCEP, Fig. Zc)], and the degenerated critical pressureVI as described above. The closed loop region obtained with
maximum line[dCPM, Fig. Za)]. At the CPSP line the bi- the cubic equation differs in one point topologically from the
nary phase diagram type V forms two additional extremene obtained with the CSvdW equation: The short branch of

C. Phase equilibria of mixtures

Downloaded 31 Oct 2006 to 134.95.49.220. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 110, No. 6, 8 February 1999 Yelash, Kraska, and Deiters 3083

1/ b) 0.5 cubic Eq.(8). It appears that the important properties are the
r P=0. values of the repulsive virial coefficients. If they are close to
21 the hard-sphere values, one can expect closed-loop behavior
Gas after combination with the vdW attraction term. As shown

1 above, the value of . is related to the values of the higher
virial coefficients by Eq.(2). However theyp,. value also

1 affects the values of the lower virial coefficients. For a
~\ Liquid simple vdWR-type equatiod=1/(1— fy) the strong corre-
lation betweerB; andy e [Bi=(1/ypo|9‘+1] becomes ob-

O vious for all virial coefficients. It follows that with decreas-

0 ——— iNg Ypole towards the unphysically low vdWR value of 0.25
the virial coefficients get unphysically large. Along this path
FIG. 7. A binary phase diagram type VIl calculated with @) (¢  towards the vdWR equation the closed-loop behavior van-
=0.4065,\ = —0.0008: (a) pT-projection; (b) one xT,-section atp,=0.5; ishes. Hence the pole of this simple equation has an indirect
T, =T/Te1; Pr=pP/Pc1- influence on the existence of closed loops, equations of state
with the physically correct pole and repulsive virial coeffi-

) . cients of the hard-sphere fluid clearly do exhibit closed-loop
the DCEP line, starting at the DCEP cusp, ends near thgahavior.

dCPM line for numerical reasons. Since this numerically

caused epd point is very close to th(_a dCPM line apd far fronkCKNOWLEDGMENTS

the TCP line, the existence of the binary phase diagram type

VI is unlikely. Hence the cubic equation produces the  This study was supported by the Deutsche Forschungs-
closed-loop typed/,, and VII but not VI. Type VIl has an gemeinschaffDFG) and the Fonds der Chemischen Indus-
isolated closed-loop island as type VI. Figure 7 shows drie. One of the authorél.K.) has received a Habilitanden-
phase diagram of type VII calculated with the cubic equa-stipendium of the DFG.

tion.

APPENDIX

IV. CONCLUSIONS Derivation of Eq.(2): Before considering the relations
In this article two equations of state have been develPetween virial coefficients we note that the geometrical se-

oped which reproduce the physical properties of the hardties

sphere fluid well and have simple mathematical structures. In o 1
contrast to the CS equation they both have a pole close to the S,= >, ¢'=——, (A1)
physically correct close-packing fraction and reproduce the i=0 1-q

virial coefficients much better than the vdWR equation.converges fotq|<1. By differentiating this equation higher
Similar equations can be found in the literafdré® of which order expressions can be obtained

some are slightly better, but always at the cost of a more "
complicated equation structure. The equations proposed here . _9"So _S (i+m! n!
yield biquadratic and cubic equations\ty, when combined Sh= B

with a vdW-kind attraction. Thereforé,,=V(p,T) can be

solved analytically, which makes them attractive for applica . : . L .
y y PP forming appropriate linear combinations of tisg it is al-

tions. : . )
The calculation of the pure substance liquid—gas coex\'&ys possible to isolate tfié term

istence curves shows very good agreement with the CSvdw =

equation. The analysis of the binary mixture behavior shows >, iq'=S;—Sy, (A3)
that the unphysically high packing fraction at the pole of the '~

CS term is not the reason for the closed-loop behavior of the = .

CSvdW equation of state: An equation of state with the >, iq'=S,—3S,+ S, (A4)
nearly correct packing fraction limit produces the same =0

closed-loop behavior as the CSvdW equation. Parts of the

closed-loop critical lines may correspond to metastable states

in real mixtures, e.g., they are below the Crystallizationgenerally

o S it AT

The factor (+n)!/i! is a polynomial ini of the ordem. By

(A2)

planes, but they are not at unphysically high packing fraction * oo

beyond the fcc close packing fraction. This investigation >, i"g'= >, pnS- (A5)
confirms the existence of closed-loop liquid—liquid critical = k=0

lines in the attractive hard-sphere fluid mixtures. Hence it is possible to express any infinite sebié8q' by a

We have shown that the existence of the closed-loofinite series ofS,, and convergence is certain fg <1. The
behavior does not depend on the order of the equation ofirial series Eq(1) must converge for all densities below the
state. It is possible to obtain closed loops with the quinticpole y<y,qe and diverge aty=yp,e. We assume that the
CSvdW equation as well as with the the quartic Egj.or the  virial coefficients can be expressed as finite or infinite series
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B 1= 2 D' (A6)
Inserting this into Eq(1) leads to

z=2 2 bpmy"=2 > (bimy™m'. (A7)
m=0 i=0 =0 m=0

The expression in parentheses is identified with i.e., we
assume

Yelash, Kraska, and Deiters

and finally

B
lim =——=Ypole- (Al14)
Bm+1
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