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The dependence of the critical volume fraction at constant pressure as a function of the chain length
of a polymer/solvent system can be described by a power law. The exponent of this power law is
investigated based on an equation of state model and experimental data for various chain-molecule
solutions here. The results are compared to recent molecular simulation data taken from the
literature and analytical models. The theoretical models, simulation, and experimental data show
that the exponent depends on the chain length of the dissolved chain molecules. The power law with
a constant exponent is therefore not a universal relationship for this dependence. Based on the
investigation of the chain length dependence a correlation for the critical volume fraction is
proposed here. This function generalizes the Flory and a renormalization group model and is applied
to the correlation of the experimental data. This more general relationship includes the power law
with the exponent obtained from the Flory theory as limiting behavior. Some additional
experimental data for oligomer solutions which are necessary for an investigation of the short chain
length limit have been measured. #D03 American Institute of Physics.

[DOI: 10.1063/1.1557432

I. INTRODUCTION The second objective of this work is based on the under-
The interest in the chain length-dependent behavior oftanding of the phase behavior, to develop a method for the
the critical properties of polymers is twofold. The fundamen-correlation and the extrapolation of the critical properties as
tal aim is to understand how the critical properties are affunction of the chain length. Such correlation should include
fected by molecular properties. It is of academic interest tadhe short and the long chain length limit. This is important
explore universal relations such as power laws with universaior the prediction of critical properties for systems which
exponents. Polymers are suitable for such study because théiave not been measured. Especially long chain molecules or
properties can be varied nearly continuously by variation ohigh weight molecules are nonvolatile, and the determination
the chain length. Furthermore, the attraction parameters casf their properties such as saturation pressure is difffcult.
be varied by choosing copolymers with periodic order. ForFurthermore, due to chemical instability it is not possible to
example, a~ABABAB —copolymer can be regarded as areach the critical temperature for several substances. How-
polymer of effective AB monomers with the correspondingever, for many chemical engineering correlation methods it is
effective interaction parameters. This makes it possible t;iecessary to obtain the properties of the critical point even
vary attraction parameters as well as the chain length. Ahough it is chemically unstable. For such cases an extrapo-
powerful method to access the topological transitions of theation method is required which is based on a few available
phase behavior of mixtures in the space of variable molecuexperimental data. Similarly, binary critical points in solu-
lar interaction parameters is the global phase diagranions of very high molecular weight polymers often need to
method. In recent papers, global phase diagrams have bega estimated from the few data available for solutions of
investigated for polymer solutiohsind for polymer blend$.  |ower molecular weight polymers.
Here, we focus on the effect of chain length on the critical A schematic representation of the liquid—liquid equilib-
properties of polymer solutions. With new experimental datarjum in binary polymer solutions is shown in Fig. 1 for so-
new calculations with an equation of state based on gutions of monodisperse polymers. The single-phase and
molecular-level approach, and molecular simulation data obyyo-phase regions are separated by coexistence ciioves
tained from a literature review, here we discuss the chaig|oud point curves in the case of polydisperse polymers
Iength dependence of the critical properties and the eXponEWeaHy interacting p0|ymer solutions such as the
for the chain length dependence of the critical volume fraC'ponstyrene/cyclohexane system can exhibit two separate co-

tion. existence curves. One is at low temperature with an upper
critical solution poin{UCST) at the maximum; the second is
dElectronic mail: t.kraska@uni-koeln.de at high temperature with a lower critical solution temperature
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the limit of infinite chain length, the critical volume fraction
can be described as function of the chain length by a power
law

d.=AN'. (3

temperature

Here,A is a substance-dependent parameter. This power law
should be distinguished from the power laws describing the
near-critical behavior of a fluid. The value of the exponent
can be obtained by Flory theory in the limit of infinite chain
length asr=—0.5>° Using renormalization arguments, de
Gennes also suggestad=—0.5” Later Muthukumar in-
cluded three-body interactions and obtained the limiting
valuer = —1/38 For high molecular weight polymers rang-
ing from a few ten thousands to few million amu, one ob-
tains experimentat values around-0.37 to —0.4°713 For
shorter chain molecules the valuesradire usually closer to
zero.

Povodyrevet al1* have replaced the exponenin Eq.
(3) by an effective exponemt.¢; which is given for the Flory
model by

polymer concentration VN
Fef=— ————. (4
FIG. 1. Schematic representation of the liquid—liquid equilibrium in binary 2(1+ \/ﬁ)

polymer solutions with three different molecular weightg ;(&>M,>Mj). . . o
The critical points—upper critical solution temperatuf&cST) and lower ~ This effective exponentq¢; has two limiting valuesr
critical solution temperatured CST)—are marked by arrows. The dotted = —1/2 for N—o and rz= —1/4 for N=1. Experimental

Iin(_as roughly represent the molecular weight dependence of the criticafagjlts for n-alkane solutions yietdvalues which are above
points. . . .
—1/4 in the monomer limit, as shown in Table I. In real
substances approaching the monomer limit, the chain-end ef-
fects become significant, which can cause this deviation. Ad-
(LCST) at the minimum. This is again valid for the mono- ditionally, in some n-alkane solutions such as the n-alkane/
disperse case. The concentrations corresponding to the uppdiethyl maleate systems, the value foin terms of the ratio
and lower critical points are the critical concentrations. Fig-of the molar volumes can go below 1.
ure 1 shows that the symmetry of the coexistence curves as Computer simulations of short chain molecules also
well as the critical concentration depend on the moleculayield values deviating from the Flory limiting value. Until
weight of the dissolved polymer. recent years it was not possible to simulate systems with
The low temperature liquid—liquid equilibrium with a very long chain molecules. Wildinget al’® obtained
UCST in polymer solutions and blends can be described by=—0.37, Panagiotopoulost al.*® obtainedr=—0.36+0.02
the theory of Flory and HugginsThe critical volume frac- and r=-0.39+0.02 in two different simulations, Mackie
tion depends on the molecular weight or the chain length iret al!’ obtainedr=—0.32. Frauenkron and Grassber§er

polymer systems as obtained an effective=—0.38 for chains with up to 2048
units. Very recently, long chain systems were simulated by

b= N 1) Yan and de Pabl§ with up to 16 000 units, and they ob-

¢ UN;+ YN, tained an extrapolated value foraround the theoretically

) ) expected value of-0.5 using a generalized Flory equation
Here, N, and N, are the number of repeating units of the ¢, yhe correlation ofs, as function of the chain length
polymers, andp. is the critical volume fraction of polymer

2. ForN=N,/N; one obtains the corresponding equation for 1
a polymer solution in a small-molecule solvent b

= 5
ky+ koNKs ®

1 2) For shorter chain lengtiiN=2000 they obtained valud,

© 1+ N =0.38. Herek; is an adjustable parameter which is related
[ the exponent by = —IimNﬂmkg in the long chain length

This equation is based on the assumption that the solvent
chemically of the same kind as the repeating unit of thdimit.

polymer. Furthermore, it is assumed thtis given by the Alternatively to Eq.(3), one can define a power law for
ratio of the molar volumes of substance 1 and 2 rather thathe ratio of the polymer and the solvent volume fractfon
the real chain length. In this definition it is possible to go

experimentally belonN=1 when the molar volume of the be —AN'2. (6)
monomer is smaller than the molar volume of the solvent. In 1~ ¢¢
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Inserting Eq.(2) into Eq. (6) yields the valug,=—0.5 not chain molecules including oligomers is influenced crucially
only in the long chain length limit but for all chain lengths by end group£® However, in the long chain length limit this
for the Flory model. This might suggest that E6). is a more  effect vanishes.
appropriate definition for a power law. According to Singh and Van Hodkthe equal-volume
Experimentally obtained values foj are usually around criterion which is frequently used for determininfg,, con-
—0.4 in several systems such as polystyrene/cyclohexangins uncertainties. These authors predicted only very minor
polystyrene/methylcyclohexane, polymethylmetacrylate/3-deviation in the resulting experimental data. However, this
octanone, n-alkane/nitrobenzene, n-alkane/dimethyldeviation can become crucial for smal}. values which can
acetamide, and n-alkane/diethyl maledtdnalyzing litera-  affect the values of the exponents in the long chain length
ture data together with a few previously unpublished data fofimit.
n-alkane solutions such as n-alkane/nitrobenzene, one can Other sources of discrepancies are experimental uncer-
see that the, values for short chains are arountD.4 for  tainties. The calculation of the volume fraction from the
some systems within an experimental error. However, for theveight fraction requires the densities of the substances.
n-alkane/o-nitrotoluene and n-alkane/1-nitropropane systembhese densities are measured at room temperature and in
the value appears to deviate. An overview over several exsome cases used for the calculation of the volume fraction at
perimental data is given in Table I. The valug=—0.4 is  higher temperature. However, considering the small differ-
thought to be a universal vald&However, this assumption ence in the density at these temperatures, this effect is ex-
still has no theoretical background besides the observatiopected to be small.
that within the Flory theory the exponent is not a limiting There are also limitations in the theory employed for the
value but valid for all chain lengths as mentioned above. investigation of the exponents. Lattice models such as the
Most theories predict=—0.5 in the long chain length Flory model usually do not include a variable density. In real
limit, but the question remains how long a chain should be t®ystems the density depends on the state conditions such as
be long enough? Experimentally, a few millions afouDal-  temperature. Furthermore, in theoretical approaches such as
ton) is considered as high molecular weidgiM); therefore, lattice models, equation of state models or simulation mod-
one might expect the value0.5 forr or r,. However, the els, the repeating units of a real polymer are approximated by
experimentak andr, usually do not reach the limiting val- united atom or coarse grain approaches. In such approxima-
ues for the studied long chain solutions even for high motion a group of atoms or repeating units are placed on a

lecular weight(Table ). Based on a renormalization group lattice site or are represented by a sphere in a chain. In the
analysis, a new dependence has been propdéett context of these simplifications it is necessary to establish a
relation between the real and the model units. Another limi-
VIn(N) tation can be that a model is valid only for chemically iden-
¢e= N (7) " tical solvent molecules and chain segments. This is the case
in some lattice models but usually not in equation of state
models.

This model vyields the limiting values=-0.5 andr,
= —0.5 for infinite N. At finite chain length, a value 0f0.4
can be obtained as in the Flory model but in a different chair}l- METHOD OF INVESTIGATION
length range. Similar dependence has been found by Yan am Experiment

9 . . . . _
de Pabld® for their simulation data. They found linear de In this work we compare experimental data with theoret-

2
nden N n In(N). N S
pendence oNg," on I(N) . ical investigation. Most of the analyzed data are taken from
There are several reasons why experimental and theoref: " . 13 98-57 .
. . . the literaturet®1% Some nitrobenzene/n-alkanes systems
ical exponents can differ. These can be systematic and ex- -
. L were measured in this wor@able 1). These data complete
perimental uncertainties.

Systematic errors are, for example, the effect of the poly:[he data available in the literature and are required in the

. : T . . context of this investigation. The critical composition is de-
dispersity which is not known about much in this context. : .
. . : termined from the volume ratio of the two separated phases,
Most theories describe thid dependence for monodisperse . | . . . .
. . which is about unity at the critical point. This phase separa-
polymer solutions. In experiments, polymers with, /M, . .
) . tion can take hours or even days; the temperature has to be
<1.06 are considered as nearly monodisperse, but the re- i .
T . ) : eld at a constant valuéewithin 0.1 K) during the whole
maining polydispersity and the corresponding moments o .
. o separation process. Phase volumes are recorded when the
the molecular weight distribution can affect the exponent. . o .
meniscus between the two liquids is sharp. For details about

According to the recent experlme_ntal and t_heore_tlcal resultaje experimental method the reader is referred to Ref. 58,
of de Sousa and Rebeld,increasing polydispersity has a

small but nonvanishing effect_on the critical concentration

which decreases. Additionally,o& et al?® predicted that B. Theory

polydisperse polymers may have nonzefgin the infinite In order to investigate the exponents of the critical vol-
long chain length limit, which cannot be described by Eqs.ume fraction, we have employed an equation of state model
(1)-(4). for long chain molecules including polymers. This classical

Furthermore, the end-group effect can cause a systematinean field model has been described in the literature in
error which can affect the chain length dependence at shodetail and has also been applied to phase equilibria investi-
chain length. It is known that the phase behavior of shorgation of polymer blend$.Here, it is summarized briefly.
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TABLE II. Experimental data for nitrobenzene/n-alkane systems. real number of repeating units, the corresponding number
of tangential spherem, and the entropic factocm within
this model are given below

Critical temperature Critical volume fraction

Carbon number (K) (Va/Von)
5 292.95 0.627 N—1
9 294.11 0.597 m= 1+0.377QN—1)+0.2669N—, (12
11 298.27 0.573
16 309.15 0.506 N1
18 314.89 0.513 -
20 319 15 0485 cm=1+0.3426§N—1)—0.421ZT. (13

The mixing rules for the extension of the equation of state is
based on the Flory modlwith the volume fraction rather

The advantage of such equation of state model is to have tgan on the mole fractiow,

tool to calculate critical data for a model system which then

can be employed for the investigation of chain-length- b= w (14
dependent phenomena. Furthermore, an equation of state X1My X5y
model includes a variable density and allows one to vary X{M{Cq + XoMyCy
molecular properties expressed by the equation of state pa- ¢c= ———— (15
rameters. XaMy+ XaMm;

The equation of state model is derived in the framework 2 2
of molecular thermodynamit$ased on the first order ther- a :lela11+ 2X1M1XpM8 15+ X5M)a2 (16)
modynamic perturbation theory of Werthéfand of Chap- °e (XM +X,m,)2 ’
manet al®° The underlying molecular model is a chain mol-
ecule consisting of tangential hard spheres with the hard M=X;m;+Xx,m,. (17

sphere fluid as reference model. Furthermore, the van der . . . . .
Waals dispersion term has been employed. The reason f P this Work'we investigate polymer solutions for which we
choosing this term is its simplicity, theoretical basis, andsetr_%toquty and tvary onlym, {Orlbtlzdbfz' different sets of
ability to represent the main physical effects. The equation € binary systems are caiculated for ditterent Sets o

employed here has been derived based on an approach !BFe{ra]\ctmf? p?rarfng_tf? & r1ter§.A<t:_onven|ent vtvay of ptrhe ser;]t-
mapping molecular properties onto a mathematically simpli-'ng € efiects ol difierent aftraction parameters on the phase

: : - ; ; . behavior is a global phase diagram as introduced by van
fied equation of stat8t=®3The resulting equation of state is o
fourth order in the densif}f Konynenburg and Scotf:®® This method has been further

developed by several authors in recent y&&ts "*and also

RT/ 3+Ay+By? 16ag, applied to address problems in phase behavior of polymer
_ _ 9,2 8) . 1,2 . .
p — — \ar ( mixtures.“ In such diagrams, boundary curves between dif-
Vi | (1-y)(3-4y) b? ; : i
ferent kinds of phase diagram are calculated in the space of
2-30m+48m the molecular parameters. These are, for example, the phase
= 9) diagram types IV and type Il separated by a tricritical bound-
ary state. Type IV exhibits a UCST and a LCST while type Il
—21+37m+8cm exhibits an UCST only. The coordinates of global phase dia-
B= 4 ' (10 grams are reduced dimensionless values of the equation of
state parameters. In this work, only the attraction parameters
mb are varied. The definitions as given below are valid ligr
Y= v 1) —p =p,
m
Here,asq4is the van der Waals attraction parameter hrlle as—ajy
covolume parameter for a repeating ugian entropic coef- = Ayt ag,’ (18)
ficient, andm the chain length parameter of the tangential-
sphere model. These parameters have been corélatetie ay,— 285+ Ay,
critical data of the homologous series of the n-alkane from =T o T a (19

) axptan
methane to n-triacontane. We choose to calculate the param-

etersa and b for methane withm=1 andc=1. Hence, all In practice, usuall\—¢ sections of the global phase diagram
dependences of the parameters on the number of carbon are calculated in which each point represents one binary sys-
omsN are correlated with the chain length parameteand  tem determined by a set of the three interaction parameters
the entropic coefficient. The model parameten represents aj, asy, aj». The boundary states are higher-order thermo-
the number of tangential spheres, while the real segments adynamic states such as tricritical states which serve as tran-
better represented by fused spheres. As noted earlier, in mastion states between two types of phase behavior. The just-
molecular simulations as well as in lattice models, the modeientioned tricritical state is a boundary between phase
chain length parameters are not identical with the number ofliagrams with a continuous binary critical curve and critical
repeating units in real molecules. The relations between theurve which is interrupted by a three-phase line.
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FIG. 2. Global phase diagram of the investigated polymer/solvent model
systems. This global phase diagram is calculated for the solvent/1000-me¥|G. 3. Critical solution temperatures as function of the volume fraction

system and represents roughly the global phase diagram in the long chaigalculated at constant pressure for the three systems A, B, and C marked in
length limit. The further shift of the boundary curves to the left-bottom Fig. 2.

corner is small for polymer chain length beyoNe=1000 and can be ne-

glected. Square, triangle, and diamond mark the interaction parameters of

the systems investigated here. Solid curve: double critical end point bound-

ary; dashed curve: critical pressure step point boundary separating types Iliagrams, slows down with increasing chain length and

and lll,;; dashed-dot-dot curve: arithmetic mean of the cross-attraction pareaches a limit. This limit is approximated by the 1000-mer/

rameter; dashed-dot: geometric mean for the cross-attraction parameter. TE%Ivent case{Fig 2). Hence, we can be sure that the phase
inset shows the binary critical curves for the phase diagram types schemati- 7 !

cally. The solid curves in the inset are binary critical curves such as théliagram types remain Unchanged with changing chain length
UCST or LCST curves. Type Il phase behavior is not present in the range ofor selected sets of attraction parameters.

the parameters and/ shown here. For these systems the critical volume fraction is calcu-
lated at fixed pressure as function of the chain lengtbof
the polymer. Since we intend to compare the results to ex-
perimental data, we use the definition of the volume fraction
For the calculation of the exponentaindr, as function  which is based on the number of repeating unitse;
of the chain length, we have set the pressure constant to thex;N;b; /(x;N;b;+X,N,b,). Here, only systems with equal
critical pressure of the solvent and calculated critical pointssegment covolumeb,=b, are considered. Thereforej,
for monodisperse polymer solutions. The critical pressure osimplifies to the segment fractiog; = x;N; /(X;N1+X5N>).
many solvents is usually on the order of a few MPa. Experi-The resulting values for the critical volume fraction as func-
ments are usually performed at a pressure of 1 bar. It hason of the chain length are shown in Fig. 3 as— T, dia-
been showhthat the difference in pressure under given con-gram. The curves represent three selected different systems
ditions has only a small influence on the critical composition.A, B, and C, which differ in the attraction parameters of the
Furthermore, in the context of this work we have checked theolvent—solvent, the solvent—segment, and the segment—
influence of the pressure on the exponeand found it to be segment interaction. System A has a cross-attraction param-
negligible. The calculations have been performed for differ-eter which is given by the geometric mean of the solvent—
ent sets of interaction parameteag using the equation of solvent and the segment-segment attraction parameters.
state model described above. In Fig. 2 the three interactioBystem B has a cross-attraction parameter which is smaller
parameter sets A, B, and C are marked in a global phastan the geometric mean. It is, furthermore, close to a bound-
diagram for the 1000-mer/solvent systems. This correspondsyy state, the double critical end point, which can affect its
for example, to a solution of polystyrene witiM,,  phase behavior. At such double critical end point the UCST
~100 000 g/mol in cyclohexane. With increasing chainand the LCST branches merge, i.e., a type IV system turns
length, the positions of these three systems in the globahto a type I, system(Fig. 1). System C is at more negative
phase diagram remain unchanged, while the boundary curvesvalues which correspond to significantly different solvent—
move further down to lowek and{ values. The knowledge solvent and segment—segment interactions. The three curves
of the global phase diagram is very important in this inves-at higher temperature shown in Fig. 3 are lower critical so-
tigation because we have to make sure that in the course aition temperaturgLCST) states at constant pressure, and
increasing the polymer chain length no topological change irthe two curves at lower temperature are upper critical solu-
the phase behavior appears as, for example, from type IV tbon temperaturdUCST) states. Here, system A is a type V
lll,. Such transition is physically possible, for example, insystem with the global interaction parameters0.0 and
the systems polystyrene/acetone or polystyrene/nitroethané=0.0 (Fig. 2). Such type exhibits only an LCST. Systems B
However, here we want to exclude such transition because @nd C are type IV systems with different interaction param-
would lead to nonreliable results with respect to the expoetersh=0.03, {=—0.1 and\=0.03, {=—0.2, respectively.
nents. From the investigation of the global phase diagram waype IV systems have a LCST and an UCST. The corre-
know the location of the boundary curves for long chainspondingpT diagrams are shown schematically in the inset
length polymer solutionsThe shift of the boundary curves, in Fig. 2.
which represent such topological changes in the binary phase The Flory theory predicts a linear dependence off 1/

IIl. RESULTS
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FIG. 6. Experimental data of the UCST for the family of nitrobenzene/n-

FIG. 4. Flory—Schultz plot for the model systems investigated here. In they|kane systems. Circles: this work; squares: literature (Red. 45; tri-

limit N—oe the data tend to a linear dependence. HErg,is the liquid—

angles: literature datidRef. 51). The curves are correlations by Eg1). The

liquid critical temperature of the solution reduced by the liquid—vapor criti- optained parameters ar®,=—0.425, P,=—1.746, P;=1.871 (solid

cal temperature of the solvent.

as function of INY2+ 1/(2N) in the long chain length limit.

curve and if forced to positive value®,=0.752, P,=0.0, P;=2.209
(dashed curve which reduces Eq21) to a two-parameter equation.

HereT, is the liquid—liquid critical temperature of the solu- the curves tend to flatten out. This tendency can also be
tion. This dependence is known as a Flory—Schultz plot. Irobserved for the experimental data for the n-alkane/
Fig. 4 the Flory—Schultz plot of the critical curves is shown nitrobenzene systems as shown in Fig. 6. The curves calcu-
for the systems investigated here. One can see that the equated with our model show quantitatively different behavior
tion of state model employed here tends to linear behaviofor the UCST and the LCST. The maximum for the UCST is
for the UCST. In our calculations as well as for experimentalvery flat while it is pronounced for the LCST. In addition to
data’?" this linearity holds down to approximateN=10.  the calculations with the equation of state model, other func-
For the LCST this seems to be the case in the long chaitions and data taken from the literature are plotted. These are

length limit only.

the Flory functior)? the molecular simulation data of Grass-

In Fig. 5 the calculated critical points are plotted in aberger and Frauenkrdfi,a renormalization group model

log(é)—log(N) diagram. Such plot is usually employed for
the determination of the exponenfrom experimental data;

taken from the same authors, and Monte Carlo simulation
data of Yan and de Pablet al!® These curves are interpo-

r is given as the slope of the data in this plot. The topologylated here by a generalized Flory function

of most curves is similar in Fig. 5. The slope is positive for
small chain length and changes to negative values beyond a _ 1

maximum at higheiN. With further increasing chain length

0.0

Y]
kl-k\ UCSQ%%\.\e g
; ~ ~,

~

-1.5

2
log(™V)

FIG. 5. Double logarithmic plot of the critical mole fraction as function of
the chain lengtiN. The symbolgexcept circlesare the USCT and LCST,
which are upper and lower liquid—liquid critical points, calculated with the
equation of state. The simulation dgRefs. 15,19 (open circles (Ref. 18
(filled circles, the Flory model(dashed curve and the renormalization
group model(dot-dashed curyeare added for the UCST. The data are cor-
related by a Flory-type function Eq20) in order to guide the eye. The
LCST vanishes at a certain small valueNobecause the phase diagram type
changes from IV to Il with decreasiny values.

be (20

ky+ko N’
which has exponent=—0.5 in the long chain limit. With
these models, only the UCST is investigated. To the best of
our knowledge there are no data for the exponent of the
LCST in the literature. One can see that the Flory function
exhibits no maximum. Simulation ddta®%suggest a flat
maximum similar to the equation of state calculations for the
UCST curves. The renormalization group model exhibits a
pronounced maximum at short chain length which is similar
to our calculations for the LCST curves.

It is not possible to determine whether the exponent
reaches a constant values in the long chain limit because of
the curvature in the lod\)—log(¢.) plot. Therefore, we plot
in Fig. 7 the calculated exponentdor the models and data
as function of the chain length 1g). The exponents calcu-
lated from literature data and data presented here for various
systems are listed in Table I. The exponent calculated with
the Flory model rapidly approaches its long chain-length
limit at r=—0.5. The Flory function has a similar curvature
as the experimental systems; however, the absolute values
are quite different. The renormalization group model and the
simulation data of Grassberger and Frauenkron are closer to
the experimental data. The renormalization group model ap-

L1:21:80 ¥20Z ABIN L1



J. Chem. Phys., Vol. 118, No. 13, 1 April 2003 Chain length dependence in critical polymer solutions 6117

0.0 0.0
UCST LCST
[} 8 °
-0.1- -0.14 84q
s1 o 8 ©
I — 8§ o
-0.2- _0.2_\_\|=|—l
'\_\. S3 Y 3 a
r r S o&,
-0.31 -0.34 Ol o
-0.4- -0.44 \~~\\\\\
-0.5 -0.5
1
log(N)

FIG. 7. Calculation of the exponentaccording to Eq(3) for all models FIG. 9. Extrapolation of the exponento long chain length. The abscissa is
shown in Fig. 5. In addition experimental data for the UCST are addedplotted in reciprocal units. For the legend see Figs. 5 and 6.
Experimental systems: S1: n-alkanes/N,N-dimethylacetamide; S2:

n-alkanes/nitrobenzene S3: n-alkanes/dimethyl maleate; S4: polystyrene/

nitroethane; S5: PMMA/3-octanone S6: polystyrene/methylcyclohexane; oo _ .
S7: polystyrene/cyclohexane. For the legend see Fig. 5. converges then to the limiting valug= —0.5. The effective

values for the exponent, calculated with the equation of
state model behave similar as the corresponding values for

proaches the Flory limit but much slower than the Floryshown in Fig. 7, with the exception that the limiting value of
function. In the monomer limit, the Flory functidsee Eq. 2 is approached faster. The same is true for the simulation
(2)] and the renormalization group modeke Eq(7)] show data. The experimental results, simulation data, and the equa-
different behavior. While the Flory function ends at a valuetions of state calculations for the UCST for long chain mol-
of r=-0.25, the renormalization group model goes to posi-€cules are in agreement. In addition, with the equation of
tive values. This reflects that the Flory function does notstate model it is possible to calculate the exponents for the
exhibit a maximum in the logk.)—log(N) plot (Fig. 5). The  LCST.

exponentr of the renormalization group model diverges to ~ From the analysis of the exponemtandr , calculated as
infinity in the monomer limit due to the logarithmic correc- function of the chain length, it appears that the exponents
tion. However, it should be noted that the renormalizationobtained in experiments are rather apparent exponents than

group model was derived in the limit of infinitely long chain the limiting exponent as obtained by the Flory model. Nev-
molecules and does not implicitly include the monomerertheless, the question remains whether all these functions

limit. contain the Flory value as limiting value or if they suggest

In order to address the question whether E4).is a  another limiting value. In order to investigate the long chain
more suitable definition of the power law than Eg), we  limit, we have replotted Fig. 7 with reciprocal I0g) axis in
have plotted in Fig. 8 the values for the exponenas func-  Fig. 9. Such plot makes it possible to estimate the limiting
tion of log(N). The Flory model yields, as mentioned earlier, values more accurately. We found that all models and data
a constant value of ,=—0.5. The renormalization group Seem to converge to the same limiting value given by the
model approaches a region around the value — 0.5 faster ~ Flory model forr.

than forr, but it exhibits an oscillation around this value and ~ The exponents for systems A, B, and C calculated here
with an equation of state model are in the range of the ex-

perimental data, although somewhat shifted to higteal-

0.0 ues. One can see that the exponeniepends on the chain
length. Hence, the exponents obtained in experiments by lin-
0.1 ear regression are apparent exponents. This is due to the
nonlinear dependence of lafi) on logN) as shown in Figs.
0.2 5 and 6. Topologically the values of these exponents can
cross zero with decreasing chain length. This shows that a
0.3 power law with a constant exponents does not represent the
r, universal behavior of the critical volume fraction as function
0.4 of the chain length. Therefore, it is necessary to find a func-
tion type other than the power law. It appears that the gen-
0.5 eralized Flory function given by Eq20) does not suffi-
ciently cover all features of the chain length dependence of
0.6 the UCST and the LCST. While the UCST exhibits a finite

value behavior in the short chain length limit, the LCST
seems to diverge. Actually, the LCST can vanish with de-
FIG. 8. Calculation of the exponen according to Eq(4) for all models ~ creasingN which is related to the change in phase behavior
shown in Fig. 5. For legend see Figs. 5 and 6. from type IV such as the polystyrene/cylohexane system to Il
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0.0 tion in the logg,)—log(N) plot. Further advantage of the cor-
: relation with Eq.(21) is its ability for extrapolation towards
0.2 the long chain length limit. Once the parameters of &4)
) are obtained, one can calculate the apparent exponent with
041 UCST Eq. (23).
’ A function based on a similar idea has been proposed
log@) 1 independently recently by Anisimoet al.”®> While their
-0.6 function includes the long chain length limit it does not in-
LCST clude the short chain length limit, e.g., it has a maximum in
-0.8- ! the log(p.)—log(N) plot at aroundN=1. Our aim here is to
include both limits, which is possible with ER1).

00 oF 0 15 20 25 20 Inspection of the values of the correlated parameters

log(N) shows that the parametBy, is different for different types of

chain length behavior of the critical volume fraction. For the
FIG. 10. Correlation of LSCT and UCST data of systemde Fig. 2 UCST P, is usually positive while it is usually negative for
with Eq. (21). The parameters for the LCST aRq=0.694,P,=-9.443,  the LCST. A negative value fdP, can lead to an undefined
iig'ggg’ and for the UCST the parameters &e=3.017,P,=3.742,  yolyme fraction for solutions of short chain molecules. This
s corresponds to the fact that for such systems the LCST can
be absent due to a topological change in the phase diagram at
short chain length. The value &f; is similar for the UCST
such as the polystyrene/dioctyl phtalate systéihis would  and the LCST. The value dP, differs: it is high for the
be then the short chain length limit of the exponent. In theyCST and low for the LCST. However, based on these
long chain length limit the experimental data as well as calobservations we do not claim a physical meaning of these
culations rather agree with the renormalization group modelparameters.
We suggest a correlation with three parameters which com-  |n Fig. 6 the correlation of the experimental data for the
bines the generalized Flory functidiEq. (20)] with the  series nitrobenzen/n-alkanes is shown. We applied(E4.

renormalization group mod¢Eq. (7)]"* to experimental data taken from the literature supplemented

\/m by our own data. One can see that EBl) is suitable to
—_—. (21)  correlate the critical volume fraction against the chain length.
Pﬁ\/N Two sets of parameters have been chosen, both of which

This equation can be rewritten by introducing=log(¢) have a maximum at short chain length. The first three-

andv = log(N), which makes it suitable for the correlation of Parameter set contains one negative parameferIn the
data in the logg.)—log(N) plot second correlation all parameters are forced to positive val-

ues. The best correlation for this case is obtained Her
u=log VP2+P3v In(10) =0, which reduces Eq21) to a two-parameter equation at
P,+V100 |

the expense of accuracy.
For the parameter sé;=0, P,=0, P;=1 one can recover
the renormalization group model; fét;=1, P,=1, P;=0  IV. CONCLUSIONS
one obtains the Flory model. The equation for the chain
length dependence of the exponentorresponding to Eq.
(21) is given by

(22)

The investigation with an equation of state model ac-
complished here shows that the exponents of the power laws
describing the chain length dependence of the critical vol-
1 1 JN ume fraction in polymer solutions depend on the chain
=3| 7, TPl (23)  length. This is true for both definitions of the power law
P—+ In(N) L given by Egs(3) and(4). The evaluation of analytical mod-

3 els such as the Flory model and a renormalization group
This equation can be used together with the power law givemodel exhibits the same trend as the equation of state model.
by Eg. (2). In Fig. 10 the correlations of equation of state The equation of state model, lattice models, simulation and
data for system B, which is a type IV system with UCST andexperimental data agree with respect to the trend of the ap-
LCST, are shown in the log()—log(N) plot. The corre- parent exponent and the limiting value for infinite chain
sponding adjusted parameters are given in the caption of Figength. Some drawbacks of the analytical models which are
10. The data calculated with equation of state are free obased on lattice models can be overcome by equation of state
experimental uncertainties and exhibit no scattering. Hencemnodels.
they are suitable for preliminary testing a correlation equa-  With respect to the above-mentioned power law, we
tion before applying it to experimental data. Equati@i) have found two effects which are possible explanations for
appears to be suitable for the correlation of the differenthe difference between the experimental and Flory expo-
chain length dependence of the LCST and the UCST. Thisents. Based on the calculations, one can show that the ex-
equation can also be useful for the correlation of experimenperimentally obtained exponents are apparent exponents.
tal data instead of using E¢3) which yields a linear func- They can change depending on the chain length range of the
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polymer investigated. Only an apparent value of the expo®Th. G. Scholte, J. Polym. Sci. 89, 281 (1972.
nentr can be obtained from experimental data when forcingilN- Kuwahara, M. Nakata, and M. Kaneko, Polynie} 415(1973.

2M. Nakata, N. Kuwahara, and M. Kaneko, J. Chem. P8®. 4278

a linear fit onto an actually nonlinear dataset. The problem is 197
that the experimental error margin of the data in typical ex<:g_a wolf and M. C. Sezen, Macromoleculas, 1010(1977.

periments is too large to recognize the often very low curva#*M. Nakata, T. Dobashi, N. Kuwahara, M. Kaneko, and B. Chu, Phys. Rev.

ture in the logg.)—log(N) plot. The correlation proposed

here[Egs.(21)—(23)] captures this curvature and can be use-;

ful in applications to experimental data.
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