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Apparent exponents for the chain length dependence of the volume
fraction in critical polymer solutions

Leonid V. Yelash and Thomas Kraskaa)

Institut für Physikalische Chemie, Universita¨t zu Köln, Luxemburger Straße 116, D-50939 Ko¨ln, Germany
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The dependence of the critical volume fraction at constant pressure as a function of the chain length
of a polymer/solvent system can be described by a power law. The exponent of this power law is
investigated based on an equation of state model and experimental data for various chain-molecule
solutions here. The results are compared to recent molecular simulation data taken from the
literature and analytical models. The theoretical models, simulation, and experimental data show
that the exponent depends on the chain length of the dissolved chain molecules. The power law with
a constant exponent is therefore not a universal relationship for this dependence. Based on the
investigation of the chain length dependence a correlation for the critical volume fraction is
proposed here. This function generalizes the Flory and a renormalization group model and is applied
to the correlation of the experimental data. This more general relationship includes the power law
with the exponent obtained from the Flory theory as limiting behavior. Some additional
experimental data for oligomer solutions which are necessary for an investigation of the short chain
length limit have been measured. ©2003 American Institute of Physics.
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I. INTRODUCTION
The interest in the chain length-dependent behavior

the critical properties of polymers is twofold. The fundame
tal aim is to understand how the critical properties are
fected by molecular properties. It is of academic interes
explore universal relations such as power laws with unive
exponents. Polymers are suitable for such study because
properties can be varied nearly continuously by variation
the chain length. Furthermore, the attraction parameters
be varied by choosing copolymers with periodic order. F
example, a2ABABAB 2copolymer can be regarded as
polymer of effective AB monomers with the correspondi
effective interaction parameters. This makes it possible
vary attraction parameters as well as the chain length
powerful method to access the topological transitions of
phase behavior of mixtures in the space of variable mole
lar interaction parameters is the global phase diag
method. In recent papers, global phase diagrams have
investigated for polymer solutions1 and for polymer blends.2

Here, we focus on the effect of chain length on the criti
properties of polymer solutions. With new experimental da
new calculations with an equation of state based on
molecular-level approach, and molecular simulation data
tained from a literature review, here we discuss the ch
length dependence of the critical properties and the expo
for the chain length dependence of the critical volume fr
tion.

a!Electronic mail: t.kraska@uni-koeln.de
6110021-9606/2003/118(13)/6110/10/$20.00
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The second objective of this work is based on the und
standing of the phase behavior, to develop a method for
correlation and the extrapolation of the critical properties
function of the chain length. Such correlation should inclu
the short and the long chain length limit. This is importa
for the prediction of critical properties for systems whic
have not been measured. Especially long chain molecule
high weight molecules are nonvolatile, and the determinat
of their properties such as saturation pressure is difficul3,4

Furthermore, due to chemical instability it is not possible
reach the critical temperature for several substances. H
ever, for many chemical engineering correlation methods
necessary to obtain the properties of the critical point e
though it is chemically unstable. For such cases an extra
lation method is required which is based on a few availa
experimental data. Similarly, binary critical points in sol
tions of very high molecular weight polymers often need
be estimated from the few data available for solutions
lower molecular weight polymers.

A schematic representation of the liquid–liquid equili
rium in binary polymer solutions is shown in Fig. 1 for so
lutions of monodisperse polymers. The single-phase
two-phase regions are separated by coexistence curve~or
cloud point curves in the case of polydisperse polyme!.
Weakly interacting polymer solutions such as t
polystyrene/cyclohexane system can exhibit two separate
existence curves. One is at low temperature with an up
critical solution point~UCST! at the maximum; the second i
at high temperature with a lower critical solution temperatu
0 © 2003 American Institute of Physics
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~LCST! at the minimum. This is again valid for the mono

disperse case. The concentrations corresponding to the u
and lower critical points are the critical concentrations. F
ure 1 shows that the symmetry of the coexistence curve
well as the critical concentration depend on the molecu
weight of the dissolved polymer.

The low temperature liquid–liquid equilibrium with
UCST in polymer solutions and blends can be described
the theory of Flory and Huggins.5 The critical volume frac-
tion depends on the molecular weight or the chain length
polymer systems as

fc5
AN1

AN11AN2

. ~1!

Here, N1 and N2 are the number of repeating units of th
polymers, andfc is the critical volume fraction of polyme
2. ForN5N2 /N1 one obtains the corresponding equation
a polymer solution in a small-molecule solvent

fc5
1

11AN
. ~2!

This equation is based on the assumption that the solve
chemically of the same kind as the repeating unit of
polymer. Furthermore, it is assumed thatN is given by the
ratio of the molar volumes of substance 1 and 2 rather t
the real chain length. In this definition it is possible to
experimentally belowN51 when the molar volume of the
monomer is smaller than the molar volume of the solvent

FIG. 1. Schematic representation of the liquid–liquid equilibrium in bina
polymer solutions with three different molecular weights (M 1.M2.M3).
The critical points—upper critical solution temperatures~UCST! and lower
critical solution temperatures~LCST!—are marked by arrows. The dotte
lines roughly represent the molecular weight dependence of the cri
points.
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the limit of infinite chain length, the critical volume fractio
can be described as function of the chain length by a po
law

fc5ANr . ~3!

Here,A is a substance-dependent parameter. This power
should be distinguished from the power laws describing
near-critical behavior of a fluid. The value of the exponenr
can be obtained by Flory theory in the limit of infinite cha
length asr 520.5.5,6 Using renormalization arguments, d
Gennes also suggestedr 520.5.7 Later Muthukumar in-
cluded three-body interactions and obtained the limit
value r 521/3.8 For high molecular weight polymers rang
ing from a few ten thousands to few million amu, one o
tains experimentalr values around20.37 to20.4.9–13 For
shorter chain molecules the values ofr are usually closer to
zero.

Povodyrevet al.14 have replaced the exponentr in Eq.
~3! by an effective exponentr e f f which is given for the Flory
model by

r eff52
AN

2~11AN!
. ~4!

This effective exponentr e f f has two limiting values:r eff

521/2 for N→` and r eff521/4 for N51. Experimental
results for n-alkane solutions yieldr values which are above
21/4 in the monomer limit, as shown in Table I. In re
substances approaching the monomer limit, the chain-end
fects become significant, which can cause this deviation.
ditionally, in some n-alkane solutions such as the n-alka
diethyl maleate systems, the value forN in terms of the ratio
of the molar volumes can go below 1.

Computer simulations of short chain molecules a
yield values deviating from the Flory limiting value. Unt
recent years it was not possible to simulate systems w
very long chain molecules. Wildinget al.15 obtained
r520.37, Panagiotopouloset al.16 obtainedr520.3660.02
and r520.3960.02 in two different simulations, Mackie
et al.17 obtained r520.32. Frauenkron and Grassberge18

obtained an effectiver520.38 for chains with up to 2048
units. Very recently, long chain systems were simulated
Yan and de Pablo19 with up to 16 000 units, and they ob
tained an extrapolated value forr around the theoretically
expected value of20.5 using a generalized Flory equatio
for the correlation offc as function of the chain length

fc5
1

k11k2Nk3
. ~5!

For shorter chain length~N52000! they obtained valuek3

50.38. Here,k3 is an adjustable parameter which is relat
to the exponent byr 52 lim

N→`
k3 in the long chain length

limit.
Alternatively to Eq.~3!, one can define a power law fo

the ratio of the polymer and the solvent volume fraction20

fc

12fc
5ANr 2. ~6!
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Inserting Eq.~2! into Eq. ~6! yields the valuer 2520.5 not
only in the long chain length limit but for all chain length
for the Flory model. This might suggest that Eq.~6! is a more
appropriate definition for a power law.

Experimentally obtained values forr 2 are usually around
20.4 in several systems such as polystyrene/cyclohex
polystyrene/methylcyclohexane, polymethylmetacrylate
octanone, n-alkane/nitrobenzene, n-alkane/dimet
acetamide, and n-alkane/diethyl maleate.21 Analyzing litera-
ture data together with a few previously unpublished data
n-alkane solutions such as n-alkane/nitrobenzene, one
see that ther 2 values for short chains are around20.4 for
some systems within an experimental error. However, for
n-alkane/o-nitrotoluene and n-alkane/1-nitropropane syst
the value appears to deviate. An overview over several
perimental data is given in Table I. The valuer 2520.4 is
thought to be a universal value.21 However, this assumption
still has no theoretical background besides the observa
that within the Flory theory the exponentr 2 is not a limiting
value but valid for all chain lengths as mentioned above.

Most theories predictr520.5 in the long chain length
limit, but the question remains how long a chain should be
be long enough? Experimentally, a few millions amu~or Dal-
ton! is considered as high molecular weight~M!; therefore,
one might expect the value20.5 for r or r 2 . However, the
experimentalr and r 2 usually do not reach the limiting val
ues for the studied long chain solutions even for high m
lecular weight~Table I!. Based on a renormalization grou
analysis, a new dependence has been proposed18,22,23

fc5
Aln~N!

AN
. ~7!

This model yields the limiting valuesr520.5 and r 2

520.5 for infiniteN. At finite chain length, a value of20.4
can be obtained as in the Flory model but in a different ch
length range. Similar dependence has been found by Yan
de Pablo19 for their simulation data. They found linear de
pendence ofNfc

2 on ln~N!.
There are several reasons why experimental and the

ical exponents can differ. These can be systematic and
perimental uncertainties.

Systematic errors are, for example, the effect of the po
dispersity which is not known about much in this conte
Most theories describe theN dependence for monodispers
polymer solutions. In experiments, polymers withMw /Mn

,1.06 are considered as nearly monodisperse, but the
maining polydispersity and the corresponding moments
the molecular weight distribution can affect the expone
According to the recent experimental and theoretical res
of de Sousa and Rebelo,24 increasing polydispersity has
small but nonvanishing effect on the critical concentrat
which decreases. Additionally, Sˇolc et al.25 predicted that
polydisperse polymers may have nonzerofc in the infinite
long chain length limit, which cannot be described by E
~1!–~4!.

Furthermore, the end-group effect can cause a system
error which can affect the chain length dependence at s
chain length. It is known that the phase behavior of sh
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chain molecules including oligomers is influenced crucia
by end groups.26 However, in the long chain length limit this
effect vanishes.

According to Singh and Van Hook27 the equal-volume
criterion which is frequently used for determiningfc , con-
tains uncertainties. These authors predicted only very m
deviation in the resulting experimental data. However, t
deviation can become crucial for smallfc values which can
affect the values of the exponents in the long chain len
limit.

Other sources of discrepancies are experimental un
tainties. The calculation of the volume fraction from th
weight fraction requires the densities of the substanc
These densities are measured at room temperature an
some cases used for the calculation of the volume fractio
higher temperature. However, considering the small diff
ence in the density at these temperatures, this effect is
pected to be small.

There are also limitations in the theory employed for t
investigation of the exponents. Lattice models such as
Flory model usually do not include a variable density. In re
systems the density depends on the state conditions suc
temperature. Furthermore, in theoretical approaches suc
lattice models, equation of state models or simulation m
els, the repeating units of a real polymer are approximated
united atom or coarse grain approaches. In such approx
tion a group of atoms or repeating units are placed o
lattice site or are represented by a sphere in a chain. In
context of these simplifications it is necessary to establis
relation between the real and the model units. Another lim
tation can be that a model is valid only for chemically ide
tical solvent molecules and chain segments. This is the c
in some lattice models but usually not in equation of st
models.

II. METHOD OF INVESTIGATION

A. Experiment

In this work we compare experimental data with theor
ical investigation. Most of the analyzed data are taken fr
the literature.12,13,28–57Some nitrobenzene/n-alkanes syste
were measured in this work~Table II!. These data complete
the data available in the literature and are required in
context of this investigation. The critical composition is d
termined from the volume ratio of the two separated phas
which is about unity at the critical point. This phase sepa
tion can take hours or even days; the temperature has t
held at a constant value~within 0.1 K! during the whole
separation process. Phase volumes are recorded whe
meniscus between the two liquids is sharp. For details ab
the experimental method the reader is referred to Ref. 5

B. Theory

In order to investigate the exponents of the critical v
ume fraction, we have employed an equation of state mo
for long chain molecules including polymers. This classic
mean field model has been described in the literature
detail1 and has also been applied to phase equilibria inve
gation of polymer blends.2 Here, it is summarized briefly
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The advantage of such equation of state model is to ha
tool to calculate critical data for a model system which th
can be employed for the investigation of chain-leng
dependent phenomena. Furthermore, an equation of
model includes a variable density and allows one to v
molecular properties expressed by the equation of state
rameters.

The equation of state model is derived in the framew
of molecular thermodynamics1 based on the first order the
modynamic perturbation theory of Wertheim59 and of Chap-
manet al.60 The underlying molecular model is a chain mo
ecule consisting of tangential hard spheres with the h
sphere fluid as reference model. Furthermore, the van
Waals dispersion term has been employed. The reason
choosing this term is its simplicity, theoretical basis, a
ability to represent the main physical effects. The equat
employed here has been derived based on an approac
mapping molecular properties onto a mathematically sim
fied equation of state.61–63 The resulting equation of state
fourth order in the density.64

p5
RT

Vm
S 31Ay1By2

~12y!~324y! D2
16aseg

b2
y2, ~8!

A5
2230m148cm

4
, ~9!

B5
221137m18cm

4
, ~10!

y5
mb

4Vm
. ~11!

Here,asegis the van der Waals attraction parameter andb the
covolume parameter for a repeating unit,c an entropic coef-
ficient, andm the chain length parameter of the tangenti
sphere model. These parameters have been correlated64 to the
critical data of the homologous series of the n-alkane fr
methane to n-triacontane. We choose to calculate the pa
etersa and b for methane withm51 andc51. Hence, all
dependences of the parameters on the number of carbo
omsN are correlated with the chain length parameterm and
the entropic coefficientc. The model parameterm represents
the number of tangential spheres, while the real segment
better represented by fused spheres. As noted earlier, in
molecular simulations as well as in lattice models, the mo
chain length parameters are not identical with the numbe
repeating units in real molecules. The relations between

TABLE II. Experimental data for nitrobenzene/n-alkane systems.

Carbon number
Critical temperature

~K!
Critical volume fraction

(Valk /Vnb)

5 292.95 0.627
9 294.11 0.597

11 298.27 0.573
16 309.15 0.506
18 314.89 0.513
20 319.15 0.485
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real number of repeating unitsN, the corresponding numbe
of tangential spheresm, and the entropic factorcm within
this model are given below

m5110.3770~N21!10.2660
N21

N
, ~12!

cm5110.3426~N21!20.4212
N21

N
. ~13!

The mixing rules for the extension of the equation of state
based on the Flory model64 with the volume fraction rather
than on the mole fractionxi

b5
x1m1b11x2m2b2

x1m11x2m2
, ~14!

c5
x1m1c11x2m2c2

x1m11x2m2
, ~15!

aseg5
x1

2m1
2a1112x1m1x2m2a121x2

2m2
2a22

~x1m11x2m2!2
, ~16!

m5x1m11x2m2 . ~17!

In this work we investigate polymer solutions for which w
setm1 to unity and vary onlym2 for b15b2 .

The binary systems are calculated for different sets
interaction parametersai j here. A convenient way of presen
ing the effects of different attraction parameters on the ph
behavior is a global phase diagram as introduced by
Konynenburg and Scott.65,66 This method has been furthe
developed by several authors in recent years64,67–71and also
applied to address problems in phase behavior of poly
mixtures.1,2 In such diagrams, boundary curves between d
ferent kinds of phase diagram are calculated in the spac
the molecular parameters. These are, for example, the p
diagram types IV and type II separated by a tricritical boun
ary state. Type IV exhibits a UCST and a LCST while type
exhibits an UCST only. The coordinates of global phase d
grams are reduced dimensionless values of the equatio
state parameters. In this work, only the attraction parame
are varied. The definitions as given below are valid forb1

5b25b12

z5
a222a11

a221a11
, ~18!

l5
a2222a121a11

a221a11
. ~19!

In practice, usuallyl–z sections of the global phase diagra
are calculated in which each point represents one binary
tem determined by a set of the three interaction parame
a11, a22, a12. The boundary states are higher-order therm
dynamic states such as tricritical states which serve as t
sition states between two types of phase behavior. The j
mentioned tricritical state is a boundary between ph
diagrams with a continuous binary critical curve and critic
curve which is interrupted by a three-phase line.
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III. RESULTS

For the calculation of the exponentsr andr 2 as function
of the chain length, we have set the pressure constant to
critical pressure of the solvent and calculated critical poi
for monodisperse polymer solutions. The critical pressure
many solvents is usually on the order of a few MPa. Expe
ments are usually performed at a pressure of 1 bar. It
been shown2 that the difference in pressure under given co
ditions has only a small influence on the critical compositio
Furthermore, in the context of this work we have checked
influence of the pressure on the exponentr and found it to be
negligible. The calculations have been performed for diff
ent sets of interaction parametersai j using the equation o
state model described above. In Fig. 2 the three interac
parameter sets A, B, and C are marked in a global ph
diagram for the 1000-mer/solvent systems. This correspo
for example, to a solution of polystyrene withMw

'100 000 g/mol in cyclohexane. With increasing cha
length, the positions of these three systems in the glo
phase diagram remain unchanged, while the boundary cu
move further down to lowerl andz values. The knowledge
of the global phase diagram is very important in this inv
tigation because we have to make sure that in the cours
increasing the polymer chain length no topological chang
the phase behavior appears as, for example, from type I
III m . Such transition is physically possible, for example,
the systems polystyrene/acetone or polystyrene/nitroeth
However, here we want to exclude such transition becau
would lead to nonreliable results with respect to the ex
nents. From the investigation of the global phase diagram
know the location of the boundary curves for long cha
length polymer solutions.1 The shift of the boundary curves
which represent such topological changes in the binary ph

FIG. 2. Global phase diagram of the investigated polymer/solvent m
systems. This global phase diagram is calculated for the solvent/1000
system and represents roughly the global phase diagram in the long
length limit. The further shift of the boundary curves to the left-botto
corner is small for polymer chain length beyondN51000 and can be ne
glected. Square, triangle, and diamond mark the interaction paramete
the systems investigated here. Solid curve: double critical end point bo
ary; dashed curve: critical pressure step point boundary separating typ
and IIIm; dashed-dot-dot curve: arithmetic mean of the cross-attraction
rameter; dashed-dot: geometric mean for the cross-attraction paramete
inset shows the binary critical curves for the phase diagram types sche
cally. The solid curves in the inset are binary critical curves such as
UCST or LCST curves. Type II phase behavior is not present in the rang
the parametersl andz shown here.
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diagrams, slows down with increasing chain length a
reaches a limit. This limit is approximated by the 1000-m
solvent case~Fig. 2!. Hence, we can be sure that the pha
diagram types remain unchanged with changing chain len
for selected sets of attraction parameters.

For these systems the critical volume fraction is calc
lated at fixed pressure as function of the chain lengthN of
the polymer. Since we intend to compare the results to
perimental data, we use the definition of the volume fract
which is based on the number of repeating unitsN f i

5xiNibi /(x1N1b11x2N2b2). Here, only systems with equa
segment covolumesb15b2 are considered. Therefore,fc

simplifies to the segment fractionf i5xiNi /(x1N11x2N2).
The resulting values for the critical volume fraction as fun
tion of the chain length are shown in Fig. 3 asfc2Tc dia-
gram. The curves represent three selected different sys
A, B, and C, which differ in the attraction parameters of t
solvent–solvent, the solvent–segment, and the segme
segment interaction. System A has a cross-attraction par
eter which is given by the geometric mean of the solven
solvent and the segment–segment attraction parame
System B has a cross-attraction parameter which is sm
than the geometric mean. It is, furthermore, close to a bou
ary state, the double critical end point, which can affect
phase behavior. At such double critical end point the UC
and the LCST branches merge, i.e., a type IV system tu
into a type IIIm system~Fig. 1!. System C is at more negativ
z values which correspond to significantly different solven
solvent and segment–segment interactions. The three cu
at higher temperature shown in Fig. 3 are lower critical s
lution temperature~LCST! states at constant pressure, a
the two curves at lower temperature are upper critical so
tion temperature~UCST! states. Here, system A is a type
system with the global interaction parametersl50.0 and
z50.0 ~Fig. 2!. Such type exhibits only an LCST. Systems
and C are type IV systems with different interaction para
etersl50.03, z520.1 andl50.03, z520.2, respectively.
Type IV systems have a LCST and an UCST. The cor
spondingpT diagrams are shown schematically in the ins
in Fig. 2.

The Flory theory5 predicts a linear dependence of 1/Tc
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FIG. 3. Critical solution temperatures as function of the volume fract
calculated at constant pressure for the three systems A, B, and C mark
Fig. 2.
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as function of 1/N1/211/(2N) in the long chain length limit.
HereTc is the liquid–liquid critical temperature of the solu
tion. This dependence is known as a Flory–Schultz plot
Fig. 4 the Flory–Schultz plot of the critical curves is show
for the systems investigated here. One can see that the e
tion of state model employed here tends to linear beha
for the UCST. In our calculations as well as for experimen
data,72,73 this linearity holds down to approximatelyN510.
For the LCST this seems to be the case in the long ch
length limit only.

In Fig. 5 the calculated critical points are plotted in
log(fc)–log(N) diagram. Such plot is usually employed fo
the determination of the exponentr from experimental data
r is given as the slope of the data in this plot. The topolo
of most curves is similar in Fig. 5. The slope is positive f
small chain length and changes to negative values beyo
maximum at higherN. With further increasing chain lengt

FIG. 4. Flory–Schultz plot for the model systems investigated here. In
limit N→` the data tend to a linear dependence. HereTc,red is the liquid–
liquid critical temperature of the solution reduced by the liquid–vapor cr
cal temperature of the solvent.

FIG. 5. Double logarithmic plot of the critical mole fraction as function
the chain lengthN. The symbols~except circles! are the USCT and LCST
which are upper and lower liquid–liquid critical points, calculated with t
equation of state. The simulation data~Refs. 15,19! ~open circles! ~Ref. 18!
~filled circles!, the Flory model~dashed curve!, and the renormalization
group model~dot-dashed curve! are added for the UCST. The data are co
related by a Flory-type function Eq.~20! in order to guide the eye. The
LCST vanishes at a certain small value orN because the phase diagram typ
changes from IV to II with decreasingN values.
n

ua-
r
l

in

y

a

the curves tend to flatten out. This tendency can also
observed for the experimental data for the n-alka
nitrobenzene systems as shown in Fig. 6. The curves ca
lated with our model show quantitatively different behavi
for the UCST and the LCST. The maximum for the UCST
very flat while it is pronounced for the LCST. In addition t
the calculations with the equation of state model, other fu
tions and data taken from the literature are plotted. These
the Flory function,52 the molecular simulation data of Gras
berger and Frauenkron,18 a renormalization group mode
taken from the same authors, and Monte Carlo simulat
data of Yan and de Pabloet al.19 These curves are interpo
lated here by a generalized Flory function

fc5
1

k11k2AN
, ~20!

which has exponentr520.5 in the long chain limit. With
these models, only the UCST is investigated. To the bes
our knowledge there are no data for the exponent of
LCST in the literature. One can see that the Flory funct
exhibits no maximum. Simulation data15,18,19 suggest a flat
maximum similar to the equation of state calculations for
UCST curves. The renormalization group model exhibits
pronounced maximum at short chain length which is sim
to our calculations for the LCST curves.

It is not possible to determine whether the expon
reaches a constant values in the long chain limit becaus
the curvature in the log(N)–log(fc) plot. Therefore, we plot
in Fig. 7 the calculated exponentsr for the models and data
as function of the chain length log~N!. The exponents calcu
lated from literature data and data presented here for var
systems are listed in Table I. The exponent calculated w
the Flory model rapidly approaches its long chain-leng
limit at r520.5. The Flory function has a similar curvatu
as the experimental systems; however, the absolute va
are quite different. The renormalization group model and
simulation data of Grassberger and Frauenkron are close
the experimental data. The renormalization group model

e

-

FIG. 6. Experimental data of the UCST for the family of nitrobenzene
alkane systems. Circles: this work; squares: literature data~Ref. 45!; tri-
angles: literature data~Ref. 51!. The curves are correlations by Eq.~21!. The
obtained parameters areP1520.425, P2521.746, P351.871 ~solid
curve! and if forced to positive valuesP150.752, P250.0, P352.209
~dashed curve!, which reduces Eq.~21! to a two-parameter equation.
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proaches the Flory limit but much slower than the Flo
function. In the monomer limit, the Flory function@see Eq.
~2!# and the renormalization group model@see Eq.~7!# show
different behavior. While the Flory function ends at a val
of r520.25, the renormalization group model goes to po
tive values. This reflects that the Flory function does n
exhibit a maximum in the log(fc)–log(N) plot ~Fig. 5!. The
exponentr of the renormalization group model diverges
infinity in the monomer limit due to the logarithmic corre
tion. However, it should be noted that the renormalizat
group model was derived in the limit of infinitely long cha
molecules and does not implicitly include the monom
limit.

In order to address the question whether Eq.~4! is a
more suitable definition of the power law than Eq.~3!, we
have plotted in Fig. 8 the values for the exponentr 2 as func-
tion of log~N!. The Flory model yields, as mentioned earlie
a constant value ofr 2520.5. The renormalization grou
model approaches a region around the valuer 2520.5 faster
than forr, but it exhibits an oscillation around this value an

FIG. 7. Calculation of the exponentr according to Eq.~3! for all models
shown in Fig. 5. In addition experimental data for the UCST are add
Experimental systems: S1: n-alkanes/N,N-dimethylacetamide;
n-alkanes/nitrobenzene S3: n-alkanes/dimethyl maleate; S4: polysty
nitroethane; S5: PMMA/3-octanone S6: polystyrene/methylcyclohexa
S7: polystyrene/cyclohexane. For the legend see Fig. 5.

FIG. 8. Calculation of the exponentr 2 according to Eq.~4! for all models
shown in Fig. 5. For legend see Figs. 5 and 6.
i-
t

n

r

,

converges then to the limiting valuer 2520.5. The effective
values for the exponentr 2 calculated with the equation o
state model behave similar as the corresponding valuesr
shown in Fig. 7, with the exception that the limiting value
r 2 is approached faster. The same is true for the simula
data. The experimental results, simulation data, and the e
tions of state calculations for the UCST for long chain m
ecules are in agreement. In addition, with the equation
state model it is possible to calculate the exponents for
LCST.

From the analysis of the exponentsr andr 2 calculated as
function of the chain length, it appears that the expone
obtained in experiments are rather apparent exponents
the limiting exponent as obtained by the Flory model. Ne
ertheless, the question remains whether all these funct
contain the Flory value as limiting value or if they sugge
another limiting value. In order to investigate the long cha
limit, we have replotted Fig. 7 with reciprocal log~N! axis in
Fig. 9. Such plot makes it possible to estimate the limiti
values more accurately. We found that all models and d
seem to converge to the same limiting value given by
Flory model forr.

The exponents for systems A, B, and C calculated h
with an equation of state model are in the range of the
perimental data, although somewhat shifted to higherN val-
ues. One can see that the exponentr depends on the chain
length. Hence, the exponents obtained in experiments by
ear regression are apparent exponents. This is due to
nonlinear dependence of log(fc) on log~N! as shown in Figs.
5 and 6. Topologically the values of these exponents
cross zero with decreasing chain length. This shows th
power law with a constant exponents does not represen
universal behavior of the critical volume fraction as functi
of the chain length. Therefore, it is necessary to find a fu
tion type other than the power law. It appears that the g
eralized Flory function given by Eq.~20! does not suffi-
ciently cover all features of the chain length dependence
the UCST and the LCST. While the UCST exhibits a fin
value behavior in the short chain length limit, the LCS
seems to diverge. Actually, the LCST can vanish with d
creasingN which is related to the change in phase behav
from type IV such as the polystyrene/cylohexane system t

.
2:
ne/
e;

FIG. 9. Extrapolation of the exponentr to long chain length. The abscissa
plotted in reciprocal units. For the legend see Figs. 5 and 6.
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such as the polystyrene/dioctyl phtalate system.72 This would
be then the short chain length limit of the exponent. In
long chain length limit the experimental data as well as c
culations rather agree with the renormalization group mo
We suggest a correlation with three parameters which c
bines the generalized Flory function@Eq. ~20!# with the
renormalization group model@Eq. ~7!#74

fc5
AP21P3ln~N!

P11AN
. ~21!

This equation can be rewritten by introducingu5 log(fc)
andv5 log(N), which makes it suitable for the correlation o
data in the log(fc)–log(N) plot

u5 logS AP21P3v ln~10!

P11A10v D . ~22!

For the parameter setP150, P250, P351 one can recove
the renormalization group model; forP151, P251, P350
one obtains the Flory model. The equation for the ch
length dependence of the exponentr corresponding to Eq
~21! is given by

r 5
1

2 S 1

P2

P3
1 ln~N!

2
AN

P11AND . ~23!

This equation can be used together with the power law gi
by Eq. ~1!. In Fig. 10 the correlations of equation of sta
data for system B, which is a type IV system with UCST a
LCST, are shown in the log(fc)–log(N) plot. The corre-
sponding adjusted parameters are given in the caption of
10. The data calculated with equation of state are free
experimental uncertainties and exhibit no scattering. Hen
they are suitable for preliminary testing a correlation eq
tion before applying it to experimental data. Equation~21!
appears to be suitable for the correlation of the differ
chain length dependence of the LCST and the UCST. T
equation can also be useful for the correlation of experim
tal data instead of using Eq.~3! which yields a linear func-

FIG. 10. Correlation of LSCT and UCST data of system B~see Fig. 2!
with Eq. ~21!. The parameters for the LCST areP150.694,P2529.443,
P353.536, and for the UCST the parameters areP153.017, P253.742,
P352.982.
e
l-
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n

n
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tion in the log(fc)–log(N) plot. Further advantage of the co
relation with Eq.~21! is its ability for extrapolation towards
the long chain length limit. Once the parameters of Eq.~21!
are obtained, one can calculate the apparent exponent
Eq. ~23!.

A function based on a similar idea has been propo
independently recently by Anisimovet al.75 While their
function includes the long chain length limit it does not i
clude the short chain length limit, e.g., it has a maximum
the log(fc)–log(N) plot at aroundN51. Our aim here is to
include both limits, which is possible with Eq.~21!.

Inspection of the values of the correlated paramet
shows that the parameterP2 is different for different types of
chain length behavior of the critical volume fraction. For t
UCST P2 is usually positive while it is usually negative fo
the LCST. A negative value forP2 can lead to an undefine
volume fraction for solutions of short chain molecules. Th
corresponds to the fact that for such systems the LCST
be absent due to a topological change in the phase diagra
short chain length. The value ofP3 is similar for the UCST
and the LCST. The value ofP1 differs: it is high for the
UCST and low for the LCST. However, based on the
observations we do not claim a physical meaning of th
parameters.

In Fig. 6 the correlation of the experimental data for t
series nitrobenzen/n-alkanes is shown. We applied Eq.~21!
to experimental data taken from the literature supplemen
by our own data. One can see that Eq.~21! is suitable to
correlate the critical volume fraction against the chain leng
Two sets of parameters have been chosen, both of w
have a maximum at short chain length. The first thre
parameter set contains one negative parameterP2 . In the
second correlation all parameters are forced to positive
ues. The best correlation for this case is obtained forP2

50, which reduces Eq.~21! to a two-parameter equation a
the expense of accuracy.

IV. CONCLUSIONS

The investigation with an equation of state model a
complished here shows that the exponents of the power l
describing the chain length dependence of the critical v
ume fraction in polymer solutions depend on the ch
length. This is true for both definitions of the power la
given by Eqs.~3! and~4!. The evaluation of analytical mod
els such as the Flory model and a renormalization gro
model exhibits the same trend as the equation of state mo
The equation of state model, lattice models, simulation a
experimental data agree with respect to the trend of the
parent exponent and the limiting value for infinite cha
length. Some drawbacks of the analytical models which
based on lattice models can be overcome by equation of s
models.

With respect to the above-mentioned power law,
have found two effects which are possible explanations
the difference between the experimental and Flory ex
nents. Based on the calculations, one can show that the
perimentally obtained exponents are apparent expone
They can change depending on the chain length range o
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polymer investigated. Only an apparent value of the ex
nentr can be obtained from experimental data when forc
a linear fit onto an actually nonlinear dataset. The problem
that the experimental error margin of the data in typical
periments is too large to recognize the often very low cur
ture in the log(fc)–log(N) plot. The correlation propose
here@Eqs.~21!–~23!# captures this curvature and can be u
ful in applications to experimental data.
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