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Interfacial pressure and density profiles are calculated from molecular dynamics and lattice
Boltzmann simulations of a liquid film in equilibrium with its vapor. The set of local values of
tangential pressure and density along an interface exhibits a van der Waals-type loop; starting from
the stable vapor bulk phase one passes through metastable and unstable states to the stable liquid
bulk phase. The minimum and maximum values of the profile of tangential pressure are related to
the liquid and vapor spinodal states, respectively. The spinodal pressures turn out to be linearly
related to the extreme values of the tangential pressure in the interface. The comparison with
equations of state shows good agreement with the simulation results of the spinodals. In addition the
properties of the metastable region are obtained. Based on this investigation a method is proposed
for the estimation of the liquid spinodal from experimentally obtained interfacial properties.
Estimations for water and helium are presented. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2837805�

I. INTRODUCTION

It is generally known that under atmospheric pressure
water freezes at 273.15 K and boils at 373.15 K, showing a
100 K wide liquid region. It is less known that this is only
true under equilibrium conditions. Under special conditions
one can cool down water to 230 K without freezing or heat it
up to 590 K and beyond without boiling,1,2 revealing a much
wider liquid phase region in the order of 360 K. These spe-
cial conditions are high purity and the absence of any distur-
bance such as heterogeneous nucleation sites, mechanical
shock, or cosmic radiation.3 The reason why these conditions
are required is the metastability of liquid water below
273.15 K and above 373.15 K. Between the regular equilib-
rium freezing and boiling points water is a stable liquid,
while it is metastable outside of this region, i.e., it can exist
for a certain period of time. This can be even several million
years if no disturbance is present.4

The metastable region is bounded by the equilibrium
curve toward the stable state region but also undercooling
and overheating have a limit. Such limits beyond that liquid
and vapor cannot exist are called stability limits. The origin
of a stability limit can be kinetic or mechanical.1 Kinetic
stability limit means that a kinetic hindrance vanishes and
phase separation becomes spontaneously in the time frame of
the measurement. The kinetic stability limit appears before
the mechanical stability limit is reached.5 Here we focus on
the classical mechanical stability limit, also called spinodal,
which is the thermodynamic limit of stability of a homog-
enous phase.

The spinodal for the liquid-vapor transition can be ap-
proached either by increasing the temperature or by decreas-
ing the pressure including negative values.1–3 The liquid
boils suddenly before one can approach the spinodal because
the experimental time frame is always finite, i.e., one cannot
measure without delay at the point in time of jumping into
the nonstable region, and impurities acting as heterogeneous
nuclei cannot be avoided completely.3 Therefore, the experi-
mental determination of the spinodal itself is impossible;
only an upper boundary before reaching the actual spinodal
can be approached. Another way to determine the classical
spinodal is the straightforward calculation from the equation
of state.1–3,5,6 The problem is that most equations of state are
constructed to describe the behavior in the stable liquid re-
gion and therefore extrapolation into the deep metastable re-
gion may be inaccurate. While such estimation of spinodals
is reasonable for some, typically simple substances using
suitable equations of state,5 it can be inaccurate for compli-
cated substances. For example, the liquid spinodal pressure
of water at room temperature is given between −200 and
−400 MPa depending on the chosen equation on state.2 This
difference is even larger at lower temperature.

In this paper we examine with simulations the relation
between the local extreme values of the tangential pressure
along an interface and the spinodal pressures. The relation
involves a factor, which has a geometrical origin. Based on
this relation the spinodal pressure of two liquids is estimated
from experimental interfacial thickness and surface tension.
The approach is investigated with two simulation methods in
order to have a wider background for discussion. Further-
more, two completely different equations of state for the
Lennard–Jones fluid taken from the literature are included in
this analysis. Also, experimental results from the literature
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for water and helium, which are the two liquids with the
most extensive set of spinodal estimations, are analyzed. The
comparison of the results obtained from molecular and me-
soscopic simulations, from equations of state, and from ex-
perimental data gives a consistent picture of the spinodal and
exhibits largely quantitative agreement.

In Fig. 1�a� isotherms calculated with the van der Waals
equation of state are illustrated, describing the density depen-
dence of the pressure at constant temperature. The dash-
dotted lines connect the stable liquid and stable vapor phases
in equilibrium. Between these two points, one can see two
extremes. Between these two extremes, the compressibility
would be negative, which is an unphysical state violating the
mechanical stability criterion,1

− � �p

�V
�

T
=

1

V�T
� 0. �1�

Here p is the pressure, V is the volume, T is the temperature,
and �T is the isothermal compressibility. The two extremes
are the liquid-vapor �minimum� and vapor-liquid �maximum�
stability limits or spinodals. The first one is the stability limit
for the liquid state �overheating or stretching a liquid without
vaporization�, while the second one is the limit of vapor state
�undercooling or pressurizing a vapor without condensation�.
In real systems of course other stability limits exist such as
for melting and crystallization7 which cannot be modeled by
the van der Waals equation of state. In the pressure-
temperature plane the spinodal states lie on two distinct
curves, which meet in the critical point �Fig. 1�b��. The vapor
pressure curve, representing the equilibrium conditions, lies
between these two curves and meets them at the critical
point. The region between the vapor pressure curve and the
vapor-liquid spinodal corresponds to metastable vapor, while
the region between the liquid-vapor spinodal and the vapor
pressure corresponds to metastable liquid. It is interesting to
note that the metastable liquid region comprehends a huge
part at negative pressure. Recent detailed analysis of stability
limits for pure substances and also binary mixtures based on
equations of state can be found in the literature.5,8

As mentioned above by overheating or stretching a
liquid one observes bubble nucleation well before reaching
the spinodal. For this reason only the homogenous nucleation
limit can be experimentally mapped, as done in the case of
water, giving 593 K at atmospheric pressure and −120 MPa
at room temperature.1,2 Since the location of the spinodal
cannot be measured exactly, only an estimate for technical
purposes can be given and hence any method which gives a
fair quantitative estimate is important.

Here we present a method for estimating the spinodal
states from simulation and experimental data of the vapor-
liquid interface. It should be mentioned that the complete
theoretical analysis is made here for classical systems. Non-
classical effects, i.e., nonclassical diverging density fluctua-
tions in pure fluids, are not included as they are not included
in the calculation of the critical point with classical equations
of state. Actually, the critical point is a special point where
the stable and unstable states encounter. The nonclassical
behavior at the critical point is hence also related to the be-
havior at the spinodal. As known from many equations of
state calculations of critical states and from investigations of
classical spinodals, the classical approximation is able to de-
scribe most experimental data well.

II. METHODS

A. Spinodal calculation from the interfacial properties

Unlike the solid-fluid interfaces, liquid-vapor interfaces
are not sharp but rather smooth at the molecular level. The
interface of many substances at low temperature far below its
critical value, for example, water at room temperature, cov-
ers only a few molecules.9,10 Approaching the critical point,
it becomes wider and diverges at the critical point.10–12 This
is the case for all liquids unless thermal degradation or any
other chemical reaction occurs before reaching the critical
temperature.

In homogenous isotropic fluid systems the pressure ten-
sor is constant throughout the system and its diagonal ele-
ments are equal, p= pxx= pyy = pzz. The scalar pressure is re-
lated to its trace,13–15

FIG. 1. �Color online� �a� Pressure-density projection of the phase diagram of a pure substance calculated with the van der Waals equation of state. Solid
curves: isotherms; dash-dot-doted: binodal; dashed curve: spinodal, dot-dashed lines: Maxwell construction; cp: critical point. �b� Pressure-temperature
projection of �a�. Legend as in �a�.
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p = 1
3Tr�p� = 1

3 �pxx + pyy + pzz� . �2�

When the system is stagnant, off-diagonal elements can be
neglected and only the three diagonal elements are nonzero.
In an inhomogeneous system the pressure tensor depends on
the position p=p�r�. When the diagonal components of p are
different and/or when the off-diagonal elements are nonzero,
the pressure tensor can be written in diagonal form and de-
composed in an isotropic diagonal part and a nonisotropic
one. Although the trace remains unaffected to these transfor-
mations, the pressure is not defined by Eq. �2�.

Let us assume a liquid film with the z-axis perpendicular
to its surface and in contact with its vapor at equilibrium.
The pressure component in this direction, usually called nor-
mal pressure, is constant through the interface due to the
mechanical stability criterion � ·p=0 at equilibrium.16 The
normal pressure equals the vapor pressure of the system,
pzz�z�= pN= pvap. Because of the symmetry of the system the
pressure tensor components in the directions x and y are
equal. They are usually called tangential pressures, pxx= pyy

= pT. The tangential pressure develops a minimum and a
maximum while passing through the interface of the film,
which can become even negative due to the tension in the
surface. The surface tension � is an integral over the differ-
ence between these two pressure components through the
interface,16

� = �
−�

+�

�pN − pT�dz . �3�

While the calculation of the pressure from the average of the
trace of the pressure tensor is possible in homogenous sys-
tems, it is not defined in inhomogeneous ones. Hence one
cannot use Eq. �2� in an interface to get an effective pressure.
As just mentioned the tangential pressure can take even
negative values because the system is stabilized in an inter-
face in equilibrium. Without the normal component acting on
the interface in a three-dimensional system, a real two-
dimensional system would eventually decompose at negative
pressure.

So we have to calculate the present pressure at a given
point in the interface as a combination of the two pressure
components. We suggest, as a general approach, that the
pressure can be written as a linear composition of the normal
and tangential pressure,

p = a · pN + c · pT, �4�

where a and c are parameters. Since the critical point be-
longs to the stable region, where the pressure tensor is iso-
tropic p= pN= pT, and simultaneously to the spinodal state,
the coefficients a and c satisfy the condition a+c=1. Hence
with Eq. �4� it follows

p = pN − c�pN − pT� . �5�

To give an idea how to obtain c we take an infinitesimal thin
slice parallel to the interfacial plane. The density is uniform
in the complete slice. Then we extend the infinitesimal slice
on the third dimension, keeping the density and the elements
of the stress tensor, which is equal to the negative pressure
tensor. The stress tensor now will have two nonzero diagonal

elements. To convert it to a three-dimensional system, by
keeping the scalar pressure �Eq. �2��, these two nonzero ele-
ments have to be multiplied by 3 /2 to compensate the con-
tribution of the third dimension. Therefore we get c=3 /2 in
Eq. �5�. Once we have an isotropic homogenous three-
dimensional phase Eq. �2� is valid again but that is not rel-
evant for the transformation itself.

The tangential pressure component changes across the
interface, reaching a minimum pT,min somewhere inside the
interface. The minimum pressure pmin according to Eq. �5�
can then be written as

pmin = pN − c�pN − pT,min� . �6a�

This is the most negative pressure that can exist in the inter-
face. We assume here that the minimum pressure pmin is
equal to the spinodal pressure psp,liq. This spinodal pressure
is the deepest obtainable pressure in the bulk liquid. Apply-
ing a more negative pressure one would lead to the breaking
of the liquid part of the coexisting phases. We will see below
that this assumption is confirmed by the results. Using this
assumption, Eq. �6a� can be rewritten as

psp,liq = pN − c�pN − pT,min� . �6b�

To complete this analysis we also apply Eq. �6b� to stable
three-dimensional homogeneous states. As soon as a state is
homogeneous the pressure has to be calculated from the trace
of the pressure tensor which gives

p = 1
3 �pxx + pyy + pzz� = 1

3 �2pT + pN� = pN − 2
3 �pN − pT� ,

�7�

and hence by comparison with Eq. �5� we get c=2 /3. How-
ever, this is only a formal expression because in a homoge-
neous phase we have p= pN= pT and hence for stable phases
including the binodal any value for c is valid. A natural
choice is to take the same value as in the nonstable region.
With this approach we can investigate the nonstable region
with the location of the spinodal and two stable states,
namely, the coexisting vapor and liquid phases.

B. Lattice Boltzmann simulations

Lattice Boltzmann simulations are performed using the
original pseudopotential model of Shan and Chen
�SC-LBM�.17–19 The lattice Boltzmann method �LBM� is
similar to the lattice gas method with the major difference
that in LBM particle groups interact instead of individual
particles. In the model of Shan and Chen �SC-LBM� phase
transition and phase equilibrium can be described by the ap-
plication of a potential � that describes the interaction be-
tween the particle groups. Here the following potential is
used:17–19

� = �0�1 − e−�/�0� , �8�

where � is the density and �0 is a constant. The correspond-
ing equation of state is given by
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p =
c2

D
��1 − d0�� +

b

2
g�2	 , �9�

where p, c, D, d0, and b are the pressure, speed of sound, the
dimension of the space of the lattice, the compressibility pa-
rameter, and the number of lattice’s nodes, respectively. The
variable g is the so-called fluid interaction coupling. It is
interpreted as negative reciprocal temperature, T=−1 /g. The

critical value of g is gc=−1 /9=−0. 1̄.
The simulations are performed in a gravitation-free,

quasi-three-dimensional system consisting of 512�2�2
cells, using the three-dimensional projection of the D4Q24
lattice20 with periodic boundary conditions. This model can
describe liquid-vapor equilibrium in two and three dimen-
sions for simple, such as argonlike systems, using suffi-
ciently big lattices.19,21,22 The liquid-vapor interface is per-
pendicular to the long axis with 512 cells. Equilibrium is
reached when the density and the impulse of the two phases
reached a constant value. It has been clarified earlier that
reducing the other two box dimensions to two cells does not
have any influence on the properties of the liquid-vapor equi-
librium, including the interfacial properties.10 However, a
possible curvature of the interface cannot be studied with
such setup because the interface with 2�2 cells is too small.
There has been further skepticism concerning the ability of
SC-LBM to describe interfaces properly.23 That has already
been addressed in an earlier work and it has been found the
skepticism is not justified.10 An exception is the thickness of
the interface which can become very large, if the size of a
lattice cell becomes large, for example, in the simulation of
turbulences.

C. Molecular dynamics simulations

Molecular dynamics simulations of a liquid film in equi-
librium with its vapor phase have been conducted with 5000
argon atoms modeled by the Lennard–Jones potential. The
Lennard–Jones parameters are � /kB=117.7 K and 	
=0.3409 nm. A large cut-off radius of 6.5	 is used in order
to avoid significant truncation effects. We obtain stable liquid
films by means of a three-step method: �a� The system is
equilibrated in NVT ensemble starting from a homogeneous
fcc crystalline configuration in a cubic box at T=100 K and
a density of 1200 g dm−3, corresponding to a liquid phase
density. During this step the system melts. �b� The system is
then equilibrated in NpT ensemble at p=0 bar. This step is
essential for the stabilization of the film in the next step. �c�
The box is expanded in one direction and the resulting film is
then equilibrated in NVT ensemble at the final temperature of
the film. In this stage some atoms evaporate while a new
stationary state is reached. A simple criterion to determine
whether the equilibrium has been reached is to determine the
point where the mean number of atoms in the film remains
constant. We define the film as the largest cluster in the sys-
tem and apply the Stoddard algorithm24 to recognize their
constituent atoms. Thermal equilibrium, i.e., the temperature
profile, has been checked as well. Starting from this point a
production phase of 2 ns is performed at constant tempera-
ture by applying an Andersen thermostat. The simulations

are performed at six temperatures from 64 to 144 K. Full
periodic boundary conditions are applied in all steps and
motion equations are solved by a leap-frog algorithm using
an integration step equal to 1 fs.

The local pressure tensor of the planar system can be
written in Cartesian coordinates as

p�z� = �exex + eyey�pT�z� + ezezpN�z� , �10�

where pN and pT are, respectively, the normal and tangential
components of the pressure tensor. We use here the formula-
tion of Irving–Kirkwood25 for the calculation of the tangen-
tial pressure components: all pairs connected by a line cross-
ing the chosen z-plane contribute to the configuration part of
the pressure components in the plane z. Thus the tangential
and normal local pressure are given by

pN�z� = ��z�kBT

−
1

2A
�
i�j

�zij�
1

rij

�U

�rij

� z − zi

zij
�
� zj − z

zij
� ,

�11�

pT�z� = ��z�kBT

−
1

4A
�
i�j

xij
2 + yij

2

�zij�
1

rij

�U

�rij

� z − zi

zij
�
� zj − z

zij
� ,

�12�

where 
�x� is the Heaviside function defined as 
�x�=1 for
x�0 and 0 otherwise.

III. RESULTS

A. Lattice Boltzmann simulations

A typical lattice position versus density plot obtained
from the SC-LBM simulation is shown in Fig. 2. A liquid
film in the simulation box is surrounded by vapor. The value
for g is −0.133 303, the liquid and vapor equilibrium densi-
ties are 1.77 and 0.19, respectively. Using the 10–90 inter-
face definition, i.e., the interface is defined as the part, where
the density is smaller than �1−0.9��1−�v� and larger than
�v+0.1��1−�v�, the interface thickness is nine lattice units.
According to a previous study,10 this corresponds to approxi-

FIG. 2. Density profile of the liquid film obtained by a lattice Boltzmann
simulation for g=−0.133 303.
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mately 3.6 nm or roughly nine atoms, if compared to atom-
istic simulations for argon. The density profile in the inter-
face can be properly described with a tangent hyperbolic
function,10 as expected for a mean field model.26,27

The difference of the pressure components in the inter-
facial region is shown in Fig. 3. Instead of plotting pT− pN

versus the lattice position we plot it against the density
through the interface. Since the simulated liquid film has two
interfaces we obtain twice the number of data points for the
interface. In order to estimate the minimum pressure the data
points are approximated by a correlation function

f = B − A exp�− exp�−
� − C

D
� −

� − C

D
+ 1� , �13�

with the parameters A=0.009 73, B=0.001 72, C=0.737 51,
and W=0.386 38 for g=−0.133 303. The minimal pressure
difference pT,min− pN is calculated as the minimum of the
correlation function.

In Fig. 4 the comparison of the spinodal directly calcu-
lated from the LBM equation of state �Eq. �13�� and spinodal
estimated from the interfacial simulation data using Eq. �6b�
is shown. Obviously the agreement is very good, within the
error of the determination of the pressure minimum. The
error increases as the surface thickness decreases; this is due
to the decrease of the number of data points �i.e., the number
of particles� used to describe a continuous interface. This
agreement supports our assumption concerning the connec-

tion of surface tension and spinodal and it also supports the
validity of Eq. �6b�. The determination of the vapor spinodal
as described below for molecular simulations was not pos-
sible for the LBM simulations performed here. The reso-
lution of the LBM is not high enough to describe small re-
gions of the interface as the maximum of tangential pressure.
Therefore we have omitted the estimation of the vapor spin-
odal from the LBM simulations here. In the next section we
analyze the relation between the interfacial tangential pres-
sure and the spinodals with molecular dynamics simulation.

B. Molecular dynamics simulations

1. Analysis and correlation of the simulation data

We performed molecular dynamics simulation of liquid
film in equilibrium with the vapor phase for Lennard–Jones
argon with a similar setup as for the LBM simulations. In a
rectangular box the film is placed in the middle as shown in
the snapshots in Fig. 5. In total we have chosen six tempera-
tures. At 112 K significantly below the critical temperature
one can clearly distinct between the vapor phase and the
liquid film. Closer to the critical point at 144 K liquid and
vapor densities approach each other and the interface be-
comes wider and diffuse.

The profiles of the density, of the normal, and of the
tangential pressure are plotted for 96 K in Fig. 6. All profiles
are fitted to analytical functions. The density profile is fitted
to a commonly used expression28,29 given by

��z� = 0.5��1 + �v� − 0.5��1 − �v�tanh�2�z − l�
d

� . �14�

The parameters of this function have physical meaning: l and
d are the thickness of the film and the interface, respectively,
and �l and �v are the densities of the liquid and vapor bulk
phases. The parameters of the functions for all five tempera-
tures chosen here are listed in Table I.

The normal pressure is decomposed in two terms: a ki-
netic positive term and a negative configuration part,

pN�z� = pN
K�z� + pN

IJ�z� . �15�

Here the kinetic part is fitted by the expression

FIG. 3. Plot of the tangential and normal pressure components difference as
function of the density. The symbols are results of the LBM simulation, the
solid curve is the correlation with Eq. �13�.

FIG. 4. �Color online� Pressure-g plot of the vapor pressure curve and the
liquid spinodal calculated from the LBM equation of state �Eq. �9�� and the
spinodal estimated form the interfacial tension using c=3 /2.

FIG. 5. �Color online� Snapshots of the equilibrated argon liquid film simu-
lations at �a� 112 K and �b� 144 K.
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pN
K�z� = 0.5�pN,1

K + pN,v
K � − 0.5�pN,1

K − pN,v
K �tanh�2�z − l�

d
�

� f1�z� �16�

where pN,l
K and pN,v

K are the kinetic contributions of the nor-
mal pressure in the liquid and vapor bulk phases. The param-
eters are listed in Table II. Since the normal pressure is con-
stant pN�z�= pN, which is the mechanical constant pressure
condition for phase equilibrium, the virial part of the normal
pressure is adjusted as

pN
U�z� = pN − pK

U�z� . �17�

As it was already mentioned pN is also equal to the vapor
pressure at the temperature of the system. The tangential

pressure can also be decomposed in two terms: a kinetic
positive term and a virial negative one.

pT�z� = pT
K�z� + pT

U�z� . �18�

The difference between the normal and tangential pressures
is fitted with the function proposed by Fuchs,30

pN�z� − pT�z� = q���z����z� − ����z��2� � f2�z� , �19�

with a parameter q. Inserting the fitted tangent hyperbolic
function of the density profile into Eq. �19� we obtain

FIG. 6. �Color online� Pressure and density profiles across an interface at 96 K. �a� Density profile. �b� Normal pressure profile. �c� Tangential pressure profile.
For the pressure profiles the kinetic and the potential contributions are added. The minimum in �c� corresponds to the density marked by an arrow in �a�. �d�
Tangential pressure profile perpendicular to the interface enlarged near the maximum on the vapor side.

TABLE I. Parameters of the correlation function �Eq. �14�� for the density profiles.

64 K 80 K 96 K 112 K 128 K 144 K

�l �g dm−3� 1512.78 1420.46 1321.91 1214.35 1079.34 885.628
�v �g dm−3� 0 1.550 39 11.198 6 35.473 87.319 6 204.302
l �nm� 2.922 34 2.682 34 2.831 76 2.940 68 3.125 29 2.826 28
d �nm� 0.442 27 0.567 86 0.741 90 0.964 67 1.352 87 2.438 87
r2 0.999 75 0.999 83 0.999 91 0.999 93 0.999 90 0.999 70
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f2�z� = sech2�Z���a − b��1 + tanh2�Z�� − 2�a + b�tanh�Z�� ,

�20�

with Z=2�z−h� /d. The parameters for this correlation func-
tion are listed in Table III. Because of the isotropy of the
kinetic part of the pressure, equation pT

K�z�= pN
K�z� is satisfied

and then the virial part of the tangential pressure is pT
U�z�

= pN
U�z�− f2�z� and the tangential pressure is pT�z�= pN�z�

− f2�z�. With this selection of the fitting functions the follow-
ing conditions are fulfilled: �a� the normal pressure is con-
stant along the axis z, �b� the kinetic parts of the tangential
and the normal pressure are equal, �c� the difference between
the tangential and normal pressure vanishes as the liquid and
vapor bulk phases are approached, �d� the tangential pressure
profile exhibits a minimum and a maximum corresponding to
the liquid and vapor spinodal pressures, respectively. These
conditions assure the convergence of the integral �Eq. �3��
and give a good agreement for the surface tension.31

2. Estimation of the spinodals

To estimate the spinodal from the simulation data of the
interface we have transformed the tangential pressure profile
from the z-coordinate dependence pT�z� to the density depen-
dence pT��� using the interfacial density profile ��z�. This
transformation is shown in Fig. 6 in detail. In Fig. 7 the
simulation data are plotted together with the correlation
function given above which are transformed in the same way
as the data itself. The curves resemble that of the well known
a der Waals loop illustrated in Fig. 1�a� for the van der Waals
equation of state. In order to compare these curves quantita-
tively with the equations of state developed for the Lennard–
Jones fluid, we transformed the isotherms calculated from
the equations of state to the scale of the tangential pressure
component by inverting Eq. �5�,

pT = pvap −
1

c
�peos − pvap� . �21�

Figure 7�a� shows the transformation of the equation of state
of Kolafa and Nezbeda32 �KN� and that of Quiñones-
Cisneros and Deiters33 �QCD� using c=3 /2 for both. One
can see that the curves are qualitatively similar but there is a
quantitative difference. This difference is not surprising be-
cause these Lennard–Jones equations of state are developed
as most other equations of state for the stable phase region
and no data of the nonstable �metastable and unstable� re-
gions are included. It is therefore a prediction and in this
context can be regarded as reasonable representation of the
simulation data. In other words the simulation of the inter-
face gives additional information for the nonstable region
where equation of state can give extrapolations only.

To estimate the liquid spinodal we have calculated the
minimum of the tangential pressure from the correlation
functions of the interfacial properties. The simulation results
for the spinodal density and the corresponding tangential
pressure maxima for all six temperatures and the vapor pres-
sure are listed in Table IV. The minimum for 96 K is marked
by the arrow in Fig. 6�c�. The corresponding density at the
same z-value is marked by an arrow in Fig. 6�a�. In this way
we obtain the liquid spinodal in the density-temperature pro-
jection. As shown in Fig. 8�a� the spinodal agrees very well
with that calculated from the KN equation of state.

The liquid spinodal pressure is calculated from the tan-
gential pressure minima using Eq. �6b�. The resulting values
for the liquid spinodal are plotted in Figs. 8�b� and 8�c� and
compared to calculations with the KN equation of state. One
can see that the agreement is very good. The deviation of the
spinodal obtained from the simulation to the spinodal of the
equation of state is similar to that of the two binodals. It has
been already pointed out earlier that for suitable equations of
state the spinodal follows changes in the binodal.5

The estimation of the vapor spinodal is more difficult

TABLE II. Parameters for the correlation function �Eq. �16�� for the kinetic part of the normal and the
tangential pressure.

64 K 80 K 96 K 112 K 128 K 144 K

pN,l
K �MPa� 20.150 8 23.629 91 26.403 79 28.213 11 28.709 99 26.509 65

pN,v
K �MPa� 0 0.029 638 0.227 01 0.863 91 2.349 61 6.120 80

l �nm� 2.920 46 2.683 62 2.831 86 2.941 31 3.124 51 2.831 92
d �nm� 0.439 69 0.566 39 0.741 95 0.962 21 1.353 48 2.433 81
r2 0.999 73 0.999 81 0.999 91 0.999 94 0.999 92 0.999 71

TABLE III. Parameters for the correlation function �Eq. �20�� for the difference between the configuration parts
of the normal and tangential pressure.

64 K 80 K 96 K 112 K 128 K 144 K

a �MPa� 8.147 48 14.283 3 9.047 33 4.999 12 2.295 92 0.532 62
b �MPa� −21.147 5 0.803 53 0.469 94 0.494 20 0.488 67 0.320 53
h �nm� 2.564 03 2.682 32 2.823 96 2.941 1 3.107 25 2.673 32
d �nm� 0.525 95 0.868 13 1.016 95 1.211 17 1.542 54 2.957 7
r2 0.998 10 0.977 26 0.954 24 0.934 33 0.791 06 0.447 6
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because the tangential pressure maximum is rather flat if
plotted as function of the density. However, the physically
based correlation functions for the pressure components and
the density profile listed above allow a reasonable estimation
of the vapor spinodal even in the pT�z� plot. In Fig. 6�d� this
maximum is enlarged in a pT�z� plot. The vapor spinodal is
calculated from the simulation data by

psp,vap = pN − c�pN − pT,max� . �22�

As one can see in Fig. 8 that the vapor spinodal also agrees
with the calculations using the KN equation of state. There
are some deviations for the data points at 144 K which are

related to the fact that this simulation is inaccurate due to
finite size effect. Furthermore, the simulation data for 144 K
are extremely flat which makes the estimation of the ex-
tremes inaccurate. The deviation of the data point at 80 K for
the vapor spinodal is an uncertainty of the correlation func-
tion. At low temperature the peak corresponding to the maxi-
mum in the excess pressure profile is very small in compari-
son to the deep minimum peak. Therefore any global fitting
of the data leads to a poor description of the maximum and
hence of the vapor spinodal. In order to improve the deter-
mination of the vapor spinodal, we have applied a local fit in
the vicinity of the pressure maximum only. The maximum
pressure obtained in this way is more accurate, as one can
see in Fig. 8 �open diamonds�. Hence, we find good agree-
ment between the interfacial tangential pressure and the spin-
odal obtained from the simulations and the equation of state.
This result therefore justifies our approach of the estimation
of the spinodal with Eqs. �5�, �6a�, and �6b�.

C. Analysis of the experimental data

We present here a simple method to estimate the liquid
spinodal pressure from experimental equilibrium interfacial
data, surface tension, and interfacial thickness. The method
involves the assumption of the algebraic form of the tangen-
tial pressure profile. As a first approach, which we call rect-
angle approximation here, we assume an interface with the
thickness d where the tangential pressure is uniform and
equal to pT,min. This rather simple rectangle approximation
gives a thumb rule for estimating liquid spinodal pressures.
Within this assumption the maximum on the vapor side is
neglected. The normal pressure is equal to the vapor pres-
sure. Therefore the surface tension given by Eq. �3� changes

FIG. 7. �Color online� Plot of the tangential pressure vs the density. The
symbols are the simulation data of the interface transformed to this projec-
tion via the density profile. The solid curves passing through the data points
are calculated directly from the correlation functions of the pressure com-
ponents pN�z�, f1�z�, and f2�z�. The dashed curves marked by pKN are the
isotherms calculated from the KN equation of state and the solid curves
marked by pQCD are the isotherms calculated from the QCD equation of
state. �a� Equation of state curves are transformed with Eq. �21� to pT using
c=3 /2.

TABLE IV. Vapor pressure or normal pressure, densities, pressure, and z-coordinate at the maxima and minima
of the tangential pressure. The data are obtained from the correlation functions Eqs. �14�, �16�, and �20�. The
numbers in brackets are obtained from a local fit in the vicinity of the vapor density, vapor pressure, and
pressures maximum and minimum.

64 K 80 K 96 K 112 K 128 K 144 K

pN �MPa�
0

0.053 042 0.237 99 0.756 10 1.823 97 3.707 02
�0.002 866�

�l �g dm−3� 1512.78 1420.46 1321.91 1214.35 1079.34 885.628

�v �g dm−3�
0

1.550 39 11.1986 35.473 87.3196 204.302
�0.25�

zmin �nm� 2.690 39 2.440 35 2.540 82 2.599 92 2.661 15 1.7533

zmax �nm� 3.38 3.154 76 3.385 63 3.533 87 3.760 05 3.7191

�l,sp �g dm−3�
1347.3

1202.13 1095.93 983.568 878.703 785.598
�1270�

�v,sp �g dm−3�
22.7113 50.6885 74.1834 128.292

219.017 332.259
�44.14� �66.51� �99.94� �152.53�

pT,max �Mpa�
0.2 0.784 89 0.65591 1.281 62

2.439 58 4.177 84
�0.271� �0.3938� �0.7884� �1.3103�

pT,min �Mpa�
−37.4252

−23.9019 −14.9426 −7.589 86 −1.964 07 2.859 73
�−34�
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to �=d · �pvap− pT,min�. The minimum tangential pressure ob-
tained from the last equation is then replaced in the transfor-
mation with Eq. �6b� to get the spinodal liquid pressure. In a
second approach we describe the interfacial profiles with
Eqs. �14� and �19�. We insert a dimensionless form of the
hyperbolic-tangent density profile �Eq. �14�� ��z�=1
−B tanh�2z /d� into Eq. �19� for the excess pressure profile.
The parameter B= ��l−�v���l+�v�−1 is close to unity at low
and moderate temperatures where the equilibrium liquid den-

sity is much larger than the vapor density. Equation �3� is
used to obtain the analytical form of the excess pressure
profile from which, according to Eq. �6b�, the liquid spinodal
pressure can be calculated.

Both approximations are used to estimate the liquid spin-
odal of two fluids, namely, water and helium-4. The spin-
odals are widely studied for these two systems �see, for ex-
ample, references in Ref. 2� and the surface tension and
interface thickness data are also available. Inserting �
=d · �pvap− pT,min� in Eq. �6b� gives the expression for the
spinodal pressure within the rectangle approximation,

psp,liq = pvap − c
�

d
, �23�

where c is taken as 3 /2. The vapor pressure for helium-4 at
1.2 K is practically zero �10−4 MPa, as given by the Interna-
tional Temperature Scale of 1990 �Ref. 34� for 1.23 K�. The
surface tension is 0.000 36 N /m and the interfacial thickness
is d=7�10−10 m.35,36 In this way, pT,min is −0.51 MPa. The
calculated surface spinodal with rectangle-approximation ap-
proximation turns out to be around −0.77 MPa, which is
close to the deepest measured value of −0.80 MPa.2

The surface tension of water at 298.15 K is much higher,
namely, 7.4�10−2 N /m, while the surface thickness is still
in the same order of magnitude, being d=3.2�10−10 m.9

The vapor pressure is relatively low, 3�10−3 MPa. This
gives a peak pressure of around −230 MPa and a spinodal
pressure of about −350 MPa. For water, there are two mod-
els, one—mainly proposed by Speedy—which states that the
spinodal has a limit around room temperature �reentrant
spinodal�, while the other—originated from Skripov—states
that it decreases monotonously with the temperature.1,2,37–40

The latter one gives twice as deep value for the spinodal at
room temperature than the reentrant one �−400 versus
−200 MPa�. This −350 MPa lies between the reentrant and
the Skripov model.1,2 To verify any of these two models by
our method, the extension of surface tension,41 the interfacial
thickness, and the constant c from Eq. �21� into the region of
metastable vapor-liquid equilibrium states will be necessary.
Such studies are in progress.

The second approximation gives for helium-4 at 1.2 K a
minimum tangential pressure of −0.6508 MPa and a liquid
spinodal pressure of −0.9762 MPa. For water minimum tan-
gential pressure is −292.7 MPa and the liquid spinodal pres-
sure is −439 MPa. In both cases the spinodal pressure takes a
somewhat larger negative value than the predictions of the
rectangle approximation and the experimental values. This
result is consistent with the fact that any metastable liquid
would cavitate before it reaches the spinodal state. On the
other hand, the minimum tangential pressure and conse-
quently the liquid spinodal pressure obtained by the rect-
angle approximation represent a conservative estimation
since the minimum tangential pressure corresponds to the
mean value of the integral of a more realistic local pressure
profile. In order to account for deviations from the rectangu-
lar approximation one can introduce an effective shape factor
s in Eq. �23� giving

FIG. 8. �Color online� Comparison of the simulation data �symbols� to the
calculations with the KN equation of state �curves� for the binodal and the
spinodal. �a� Temperature-density projection. �b� Pressure-temperature pro-
jection. �c� Enlargement of the pressure-temperature projection at positive
pressure. In all diagrams the open diamonds on the vapor side are the spin-
odal data obtained from local fit of the pressure maximum on the vapor side.
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psp,liq = pvap − s · c
�

d
. �24�

This effective shape factor s is equal to 1 if we assume a
rectangular shape of the peak and 2 for a triangular shape. It
should be made very clear that this does not mean that the
peak is actually rectangular or triangular, it just means that it
can effectively described by such shapes. In Fig. 9 the shape
factor calculated with rearranged Eq. �24� using the simula-
tion data of surface tension, interfacial thickness, and liquid
spinodal pressure is plotted for the molecular dynamics
�MD� and LBM simulations performed here. This diagram
gives an idea about realistic values for the shape factor be-
cause we can use the consistent data sets obtained from the
simulation including all properties required in Eq. �24� and
the liquid spinodal pressure calculated from Eq. �6b�. As
discussed above the rectangular shape appears to be a lower
limit, while the triangle is like an upper border. Interestingly
the shape factors up to T /Tc=0.9 are roughly 1 for MD and
1.5 for LBM. The notorious increase of the shape factor
close to the critical temperature, T /Tc=0.9, is likely related
to the fact that the positive and negative contributions to the
interfacial tension become comparable at higher temperature.
At low temperature this compensation effect is negligible
since the negative contribution corresponding to the mini-
mum of the excess pressure profile dominates by far over the
positive one. The shape factors obtained from MD and LBM
simulations exhibit also different critical behaviors. While
the shape factor of the MD simulations appears to diverge to
positive values, the LBM shape factors tend to the value
zero. An analysis of the exponents of the power laws for d,
�, and pvap− psp,liq gives an exponent for s of −0.61 in the
case of MD simulations and 0.07 for LBM simulations.

We also should mention here, that using this method, the
prediction gives back the proper limiting behavior of the
spinodal pressure at the critical point because surface tension
goes to zero and interface thickness diverges, giving zero
peak excess pressure.

IV. SUMMARY AND CONCLUSION

The results gathered in this investigation are manifold.
First, it appears that the interfacial tangential pressure plotted

versus the interfacial density gives a van der Waals loop in
the nonstable region as suggested by the van der Waals equa-
tion of state. Many equations of state exhibit this loop while
there are also several equations, typically highly accurate
many-parameter correlation equations, which have more ex-
tremes in the two-phase region or even discontinuous behav-
ior. This is usually the result of highly accurate correlation of
the experimental data in the stable region of the phase dia-
gram forcing all undesired mathematical behavior into the
nonstable region. The interfacial continuity as obtained form
simulations is therefore useful for the development of equa-
tions of state suitable for metastable systems.

There is a long discussion about the extension of equa-
tions of state into the nonstable �i.e., metastable and un-
stable� region.42 Hill,43 for example, has proposed to directly
use the van der Waals equation of state for the tangential
pressure in Eq. �3�. While it is generally accepted to extrapo-
late an isotherm into the metastable region, it is criticized
that a system cannot exist at the unstable branch of the
isotherm.44 There is no doubt that a three-dimensional homo-
geneous system cannot exist in the unstable region but by
crossing an interface one passes trough local states where the
mechanical stability condition of a uniform systems is not
satisfied. A two-phase system forms an interface where the
density evolves continuously. A sharp interface would give
vanishing surface tension according to Eq. �3�. If one con-
tinuously varies the density at a constant subcritical tempera-
ture, one has to pass through the unstable region in the phase
diagram as well as in the interface. The mechanical stability
criterion requires that the normal pressure is constant
through the interface. Therefore only the tangential compo-
nents can take the values which correspond to the density in
the unstable region. This consequently leads also to c=3 /2
in Eqs. �5�, �6a�, and �6b�.

Furthermore, the value c=3 /2 in Eq. �5� leads to a defi-
nition of the local pressure in a planar inhomogeneous sys-
tem. Mareschal et al.45 presented an ensemble-averaged defi-
nition of the local pressure where the configuration part only
includes the contribution of pairs located in a two-
dimensional plane. For practical application a coarse-grained
approximation of the local pressure is introduced where a
thin three-dimensional slab is used instead of a two-
dimensional system.46–48 In ongoing investigations we fur-
ther analyze the relation between our local pressure defini-
tion given by Eq. �5� and other approaches.

We show here that the classical spinodal can be directly
estimated by microscopic and mesoscopic equilibrium simu-
lations of liquid-vapor interfaces. This is a comparable
simple way for the estimation of a spinodal besides the bin-
odal directly from an equilibrium simulation. Furthermore,
one can apply the corresponding state principle to compare
the results of the interfacial thickness obtained by LBM and
MD simulations. The reduced temperature of LBM system
is Tr=g /gc, which takes the value of 0.8335 for
g=−0.133 303. This reduced temperature corresponds ap-
proximately to the simulation of LJ-argon at 128 K. For this
system the interfacial thickness is 1.35 nm and even smaller
if the 10-90 definition is applied as for the analysis of the
LBM simulations. This value is about 2.7 times smaller com-

FIG. 9. �Color online� Shape factor s calculated from the simulation data
and plotted vs the reduced temperature. The shape factors for a rectangle
and a triangle are marked by dashed lines. Triangles: MD data; circles: LBM
data.

114708-10 Imre et al. J. Chem. Phys. 128, 114708 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



pared to the LBM result being 3.6 nm as mentioned in Sec.
III A. Hence, although it is difficult to determine the inter-
face exactly it is possible to link the liquid spinodal pressure
to the minimum of the tangential pressure component with
the same c value as for molecular simulations. This supports
the generality of the approach presented here. It is apparently
not restricted to a particular type of interaction.

Finally, based on this analysis of the interface simula-
tions we propose a simple approximation to estimate the
liquid spinodal pressure from experimental data of the sur-
face tension and interfacial thickness given by Eq. �23�. This
method can be useful for spinodal estimation especially in
systems where qualitative deviations from the usual mono-
tonic behavior are expected such as water.
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