skip to content

Publications

 

2024

MNU Journal, Issue 6, pp. 491-498 (2024) T. Kraska
The streamless perceptron - pen-and-paper introduction of a simple machine learning algorithm 
Article Online Supplements article in English Online Supplement

Book chapter (2024) T. Kraska
Transparent particle simulation in chemistry lessons for a deeper understanding of chemical processes using computational thinking 
In: Claudia Bohrmann-Linde, Nico Meuter, Diana Zeller (eds.) (2024), Netzwerk Digitalisierter Chemieunterricht. NeDiChe-Treff 2022 anthology 
https://doi.org/10.25926/c93g-xn66 download pdf Supporting Information

MNU Journal, Issue 1, pp. 71-76 (2024) T. Kraska
"The Kunh's Knäuel are an abomination to us here" - Paradigm shift through particle simulation in chemistry teaching 
Article pdf Online supplements

 

2023

CHEMKON, 30, 341-348 (2023) T. Kraska
Glass-box molecular dynamics simulations for teaching the van der Waals interaction
https://doi.org/10.1002/ckon.202200058

High-Pressure Fluid Phase Equilibria, Phenomenology and Computation 
2nd Edition, Volume 2 - (2023) U. K. Deiters, T. Kraska 
ISBN: 9780443132803

Physics Education, 58, 065010 (2023) T. Kraska
Particle simulations for inquiry-based teaching of polymer shape and entropic elasticity using computational thinking 
https://doi.org/10.1088/1361-6552/acf086

CHEMKON 30, 109-116 (2023) T. Kraska
Wave mechanics foundations for quantum chemistry in secondary education
https://doi.org/10.1002/ckon.202100037
 

2022

J. Chem. Educ. 99, 2026-2031 (2022) T. Kraska
A simulation game illustrating the density-Le Chatelier effect on a chemical equilibrium of the type A=2B
https://doi.org/10.1021/acs.jchemed.2c00203

 

2021

CHEMKON 28, 353-355 (2021) T. Kraska
Comment on the article "A ball fight, the law of mass action and Le Chatelier - a viable analogy for teaching dynamic equilibrium. Invitation to discussion and further development"
https://doi.org/10.1002/ckon.202100061

CHEMKON 28, 299-304 (2021) T. Kraska
Digitalization and computational thinking in lower secondary science education using the example of paper chromatography
https://doi.org/10.1002/ckon.202100002

CHEMKON 28, 112-121 (2021) T. Kraska
Mathematical modelling in high school chemistry: chemical kinetics
https://doi.org/10.1002/ckon.201900053

 

2020

World J. Chem. Educ. 8, 114-121 (2020) T. Kraska
Mathematical modeling in secondary chemistry education: Chromatography
https://doi.org/10.12691/wjce-8-3-3

J. Chem. Educ. 97, 1951-1959 (2020) T. Kraska
Establishing a Connection for Students between the Reacting System and the Particle Model with Games and Stochastic Simulations of the Arrhenius Equation
https://doi.org/10.1021/acs.jchemed.0c00081

CHEMKON 27, 232-243 (2020) T. Kraska
Mathematical modeling in high school chemistry: Titration curves
https://doi.org/10.1002/ckon.201900015

 

2019

Z. Phys. Chem., 233, 471 (2019)
K. Leonhard and T. Kraska
Editorial, Congratulations to Ulrich Deiters
https://doi.org/10.1515/zpch-2019-1065

CHEMKON 26, 250-260 (2019) T. Kraska
Quantum mechanics in chemistry class: the linear and the cyclic particle in a box model applied to dyes and aromatics
https://doi.org/10.1002/ckon.201700500

 

2015

Environmental Earth Sciences, 73, 4373 (2015)
A. R. Imre, C. Ramboz, U.K. Deiters and T. Kraska
Anomalous fluid properties of carbon dioxide in the supercritical region - Application to geological CO2 storage and related hazards
https://doi.org/10.1007/s12665-014-3716-5

 

2014

J. Chem. Phys. 140, 124305 (2014)
S. Braun, V.I. Kalikmanov, T. Kraska
Molecular dynamics simulation of nucleation in the binary mixture n-nonane/methane
https://doi.org/10.1063/1.4868963
download pdf here 
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Chemical Physics and may be found at the DOI link above. 

 

2013

International Journal of Thermophysics, 34, 2053-2064 (2013)
A.R. Imre, A. Baranyai, U. K. Deiters, P.T. Kiss, T. Kraska, and S. E. Quinones Cisneross
Estimation of the Thermodynamic Limit of Overheating for Bulk Water from Interfacial Properties
https://doi.org/10.1007/s10765-013-1518-8

J. Chem. Chem. Phys. 138, 244710 (2013)
S. Braun, A. R. Imre, T. Kraska
Stability limits of n-nonane calculated from molecular dynamics interface simulations
https://doi.org/10.1063/1.4811197
download pdf here
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Chemical Physics and may be found at the DOI link above. 

 

2012

In: V. I. Kalikmanov, Nucleation Theory, ISBN 978-90-481-3642-1
Lecture Notes in Physics, Springer, The Netherlands, Chapter 8 (2012)
T. Kraska
Computer simulations of nucleation
got to the book

Nuclear Engineering Design, 252, 179 (2012)
A. R. Imre, U.K. Deiters, T. Kraska, I. Tiselj
The pseudocritical region for supercritical water
https://doi.org/10.1016/j.nucengdes.2012.07.007

J. Chem. Phys. 136, 214506 (2012)
S. Braun, T. Kraska
Dynamic structure of methane/n-nonane clusters during nucleation and growth
https://doi.org/10.1063/1.4723868
download pdf here
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Chemical Physics and may be found at the DOI link above. 

High-Pressure Fluid Phase Equilibria
Phenomenology and Computation, 1st ed.
Ulrich K. Deiters and Thomas Kraska
Elsevier (2012)
got to the book 

Molecular Simulation, 38, 152-160 (2012)
F. Römer, T. Kraska
A force field for naproxen
https://doi.org/10.1080/08927022.2011.608847

Soft Materials, 10, 130-152 (2012)
F. Römer, B. Fischer, T. Kraska
Investigation of the nucleation and growth of methanol clusters from supersaturated vapor by molecular dynamics simulations
https://doi.org/10.1080/1539445X.2011.599704

 

2010

J. Supercritical Fluids, Van der Waals Special Issue, 55, 462-471 (2010)
M. Türk, M. Crone, T. Kraska
A comparison between models based on equations of state and density-based models for describing the solubility of solutes inCO2
https://doi.org/10.1016/j.supflu.2010.08.011

J. Supercritical Fluids, Van der Waals Special Issue, 55, 769-777 (2010)
F. Römer, T. Kraska
Molecular dynamics simulation of the formation of pharmaceutical particles by rapid expansion of a supercritical solution
https://doi.org/10.1016/j.supflu.2010.08.010

Nuclear Engineering Design, 240, 1569-1574 (2010)
A. R. Imre, I. F. Barna, G. Ezsol, G. Hazi, T. Kraska
Theoretical study of flashing and water hammer in a supercritical water cycle during pressure drop
https://doi.org/10.1016/j.nucengdes.2010.03.008

 

2009

J. Phys. Chem. C 113, 19028-19038 (2009)
F. Römer, T. Kraska
Molecular Dynamics Simulation of Naphthalene Particle Formation by Rapid Expansion of a Supercritical Solution
https://doi.org/10.1021/jp906478z

J. Chem. Phys. 131, 064308 (2009)
S. Braun, F. Römer, T. Kraska
Influence of the carrier gas molar mass on the particle formation in a vapor phase
https://doi.org/10.1063/1.3204780
download pdf here
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Chemical Physics and may be found at the DOI link above. 

Fluid Phase Equilibria 284, 31-37 (2009)
A. R. Imre, T. Kraska
Estimation of spinodals from the density profile of the vapor-liquid interface
https://doi.org/10.1016/j.fluid.2009.06.007

J. Chem. Eng. Data 54, 1569-1574 (2009)
T. Kraska, A. R. Imre, S. J. Rzoska
Miscibility Holes and Continuous Liquid-Liquid Miscibility Curves in Type III and IV Systems
https://doi.org/10.1021/je800910f

J. Chem. Eng. Data 54, 1592-1597 (2009)
T. Kraska, M. Türk
Experimental and theoretical investigation of the phase behavior of naproxen in supercriticalCO2
https://doi.org/10.1021/je800920d

J. Phys. Chem. B 113, 4688-4697 (2009)
T. Kraska, F. Römer, A. R. Imre
The relation of interface properties and bulk phase stability: MD simulation of carbon dioxide
https://doi.org/10.1021/jp808789p

Phys. Chem. Chem. Phys. 11, 4039-4050 (2009) technical note
F. Römer, S. Braun, T. Kraska
Development of an EAM (Embedded Atom Method) potential for zinc and its application to the growth of nano-particles
https://doi.org/10.1039/b820278h

J. Phys. Chem. B 113, 3504-3511 (2009)
S. Quiñones-Cisneros, U. K. Deiters, R. Rozas, T. Kraska
A new model for the correlation of the surface tension based on friction theory
https://doi.org/10.1021/jp8073255

 

2008

J. Phys. Chem. B 112, 12408-12413 (2008)
T. Kraska
Direct observation of single Ostwald ripening processes by molecular dynamics simulation
https://doi.org/10.1021/jp806315e

Physica B 403, 3663-3666 (2008)
A. R. Imre, T. Kraska
Liquid-vapour spinodal of pure helium-4
https://doi.org/10.1016/j.physb.2008.06.007

J. Non-Cryst. Solids 354, 4157-4162 (2008)
A. R. Imre, A. Drozd-Rzoska, A. Horvath, T. Kraska, S. J. Rzoska
Solid-fluid phase transitions under extreme pressures including negative ones
https://doi.org/10.1016/j.jnoncrysol.2008.06.033

J. Phys.: Condens. Matter 20, 244104 (2008)
A. R. Imre, A. Drozd-Rzoska, T Kraska, S. J. Rzoska, K. W. Wojciechowski Spinodal strength of liquids, solids and glasses
https://doi.org/10.1088/0953-8984/20/24/244104

J. Chem. Phys. 128, 124506 (2008)
V. I. Kalikmanov, J. Wölk, T. Kraska
Argon nucleation: bringing together theory, simulations and experiment
https://doi.org/10.1063/1.2888995
download pdf here
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Chemical Physics and may be found at the DOI link above. 

J. Chem. Phys. 128, 114708 (2008)
A. R. Imre, G. Mayer, G Hazi, R. Rozas, T. Kraska
Estimation of the liquid-vapor spinodal from interfacial properties obtained from molecular dynamics and lattice Boltzmann simulations
https://doi.org/10.1063/1.2837805
download pdf here
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Chemical Physics and may be found at the DOI link above. 

Phys. Rev. B 77, 045425 (2008)
N. Lümmen, T. Kraska
Solidification kinetics of Fe0.5Pt0.5 clusters in an Ar carrier gas: Molecular dynamics simulations
https://doi.org/10.1103/PhysRevB.77.045425

 

2007

J. Chem. Phys. 127, 234509 (2007) 
F. Römer, T. Kraska 
Homogeneous nucleation and growth in supersaturated zinc vapor investigated by molecular dynamics simulation
https://doi.org/10.1063/1.2805063

J. Phys. Chem. C 111, 15784 (2007)
R. Rozas, T. Kraska
Molecular dynamics simulation of heterogeneous nucleation and growth of argon at polyethylene films
https://doi.org/10.1021/jp073713d

Eur. Phys. J. Special Topics 149, 57 (2007)
R. Rozas, N. Lümmen, T. Kraska
Structure formation of metallic nano-particles in the vapor phase and in disperse materials
https://doi.org/10.1140/epjst/e2007-00244-2

Nanotechnology 18, 165706 (2007)
R. Rozas, T. Kraska
Formation of metal nano-particles on and in polymer films investigated by molecular dynamics simulation
https://doi.org/10.1088/0957-4484/18/16/165706

J. Supercrit. Fluids 42, 212-218 (2007)
T. Kraska, S. E. Quiñones-Cisneros, U. K. Deiters
Correlation of binary diffusion coefficients of organic substances in supercritical carbon dioxide based on equations of state
https://doi.org/10.1016/j.supflu.2007.03.003

Model. Sim. Mater. Sci. Eng. 15, 319-334 (2007)
N. Lümmen, T. Kraska
Common Neighbor Analysis for binary atomic systems
ttps://doi.org/10.1088/0965-0393/15/3/010

Eur. Phys. J. D 41, 247-260 (2007)
N. Lümmen, T. Kraska
Homogeneous nucleation in iron-platinum vapor investigated by molecular dynamics simulation
https://doi.org/10.1140/epjd/e2006-00210-4

 

2006

J. Chem. Phys. 124, 054507 (2006)
T. Kraska
Molecular dynamics simulation of argon nucleation from supersaturated vapor in the NVE ensemble
https://doi.org/10.1063/1.2162882

Comp. Mat. Sci. 35, 210-215 (2006)
N. Lümmen, T. Kraska
Influence of the carrier gas on the formation of iron nano-particles from the gas phase: a molecular dynamics simulation study
https://doi.org/10.1016/j.commatsci.2004.07.008

J. Mat. Sci. 41, 1547-1556 (2006)
T. Kraska, D. Tuma
High-pressure phase equilibria in binary and ternary mixtures with one near- or supercritical and one high-molecular component. New insights for application and theory
https://doi.org/10.1007/s10853-006-4644-x

 

2005

Nanotechnology 16, 2870-2877 (2005)
N. Lümmen, T. Kraska
Molecular dynamics investigation of homogeneous nucleation and cluster growth of platinum clusters from supersaturated vapor
https://doi.org/10.1088/0957-4484/16/12/023

J. Aerosol Sci. 36, 1409-1426 (2005)
N. Lümmen, T. Kraska
Homogeneous nucleation of iron from supersaturated vapor investigated by molecular dynamics simulation
https://doi.org/10.1016/j.jaerosci.2005.03.011

Phys. Rev. B 71, 205403 (2005)
N. Lümmen, T. Kraska
Molecular dynamics investigations of the coalescence of iron clusters embedded in an inert gas heat bath
https://doi.org/10.1103/PhysRevB.71.205403

J. Chem. Phys. 122, 064507 (2005)
A. R. Imre, T. Kraska
Stability limits in binary fluids mixtures
https://doi.org/10.1063/1.1847651

J. Supercrit. Fluids 33, 107-113 (2005)
A. Weber, L. V. Yelash, T. Kraska
Effect of the phase behaviour of the solvent-antisolvent systems on the gas antisolvent crystallization of paracetamol
https://doi.org/10.1016/j.supflu.2004.07.007

 

2004

Ind. Eng. Chem. Res. 43, 6213-6221 (2004)
T. Kraska
Stability limits of pure substances: an investigation based on equations of state
https://doi.org/10.1021/ie049720v

Int. J. Mod. Phys. C, 15, 1049-1060 (2004)
G. Mayer, G Hazi, J. Pales, A. R. Imre, B. Fischer, T. Kraska
On the system size of lattice Boltzmann simulations
https://doi.org/10.1142/S0129183104006492

Nanotechnology, 15, 525-533 (2004)
N. Lümmen, T. Kraska
Investigation of the formation of iron nano-particles from the gas phase by molecular dynamics simulation
https://doi.org/10.1088/0957-4484/15/5/021

Int. J. Mod. Phys. C, 15, 459-469 (2004)
G. Mayer, G Hazi, A. R. Imre, T. Kraska, L. V. Yelash
Lattice Boltzmann simulation of vapor-liquid equilibrium on 3D finite lattice
https://doi.org/10.1142/S0129183104005875

Fluid Phase Equilibria, 217, 227-231 (2004)
L. V. Yelash, T. Kraska
A simple correlation equation for the chain length dependence of the critical volume fraction in polymer solutions and blends
https://doi.org/10.1016/j.fluid.2003.06.003

Ind. Eng. Chem. Res. 43, 237-242 (2004)
A. R. Imre, Y. C. Bae, B. H. Chang, T. Kraska
A semi-empirical method for the prediction of the Theta-Lower Solution Boundary Temperature in polymer solutions
https://doi.org/10.1021/ie030548p

 

2003

Ind. Eng. Chem. Res. 42, 5662-5673 (2003)
H. Segura, T. Kraska, A. Meija, J. Wisniak, I. Polishuk
Unnoticed Pitfalls of Soave-type alpha Functions in Cubic Equations of State
https://doi.org/10.1021/ie020828p

J. Chem. Phys. 118, 6110-6119 (2003)
L. V. Yelash, T. Kraska, A. R. Imre, S. J. Rzoska
Apparent exponents of the chain length dependence of the volume fraction in critical polymer solutions
https://doi.org/10.1063/1.1557432
download pdf here
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Chemical Physics and may be found at the DOI link above. 

Russ. J. Phys. Chem. 77, Suppl. 1, 51-57 (2003)
T. Kraska, J. Jurtzik, D. Tuma, G. M. Schneider
Correlation of the solubility of low-volatile organic compounds in near- and supercritical fluids: anthraquinone dyes inCO2 and N2O


AIChE Journal, 49, 1569-1579 (2003)
L. V. Yelash, T. Kraska
Volume translated equations of state: empirical approach and physical relevance
https://doi.org/10.1002/aic.690490620

 

2002

Ind. Eng. Chem. Res. 41, 4414-4421 (2002)
I. Polishuk, J. Wisniak, H. Segura, T. Kraska
About the Relation between the Empirical and Theoretically Based Parts of van der Waals-Like Equations of state.
https://doi.org/10.1021/ie020102t

Fluid Phase Equilibria, 194-197, 469-482 (2002)
T. Kraska, K. Leonhard, D. Tuma, G. M. Schneider
Correlation of the solubility of low-volatile organic compounds in near- and supercritical fluids. Part II: applications to disperse red 60 and two disubstituted anthraquinones
https://doi.org/10.1016/S0378-3812(01)00652-5

Phys. Chem. Chem. Phys., 4, 987-991 (2002)
M. Bardas, N. Dahmen, T. Kraska, K.-D. Wagner, L. V. Yelash
Isothermal Vapor-Liquid Equilibria of Binary Systems of Carbon Dioxide and 1-Butyne, Compared to Other Binary CO2+C4Hn Systems in Terms of Global Parameters
https://doi.org/10.1039/b109059c

Phys. Chem. Chem. Phys., 4, 992-1001 (2002)
A. Imre, T. Kraska, L. V. Yelash
The effect of pressure on the liquid-liquid phase equilibrium of two polydisperse polyalkylsiloxane blends
https://doi.org/10.1039/b109176j"

J. Supercritical Fluids, 23, 209-224 (2002)
T. Kraska, K. Leonhard, D. Tuma, G. M. Schneider
Correlation of the solubility of low-volatile organic compounds in near- and supercritical fluids. Part I: Applications to adamantane and beta-carotene
https://doi.org/10.1016/S0896-8446(02)00003-7

 

2001 

Phys. Chem. Chem. Phys. 3, 3114-3118 (2001)
Leonid V. Yelash, Thomas Kraska
A generic equation of state for the hard-sphere fluid incorporating the high density limit
https://doi.org/10.1039/b102972j

Fluid Phase Equilibria, 182, 27-36 (2001)
Leonid V. Yelash, Thomas Kraska
Mapping of theoretical equations of state for molecular fluids on a biquadratic equation
https://doi.org/10.1016/S0378-3812(01)00377-6

 

2000

Phys. Chem. Chem. Phys. 2, 4734-4739 (2000)
Leonid V. Yelash, Thomas Kraska
A mapping equation of state: development for the dipolar hard sphere fluid
https://doi.org/10.1039/b005196i

Fluid Phase Equilibria, 172,1-26 (2000)
Ilya Polishuk, Jaime Wisniak, Hugo Segura, Leonid V. Yelash, Thomas Kraska
Prediction of the critical locus on binary mixtures using equation of state: II. Investigation of van der Waals-type and Carnahan-Starling-type equations of state
https://doi.org/10.1016/S0378-3812(00)00366-6

 

1999

Phys. Chem. Chem. Phys. 1, 4919-4925 (1999)
Leonid V. Yelash, Thomas Kraska, Erich A. Müller, Norman F. Carnahan
Simplified equation of state for non-spherical hard particles: an optimized shape factor approach
https://doi.org/10.1039/a904752b

Phys. Chem. Chem. Phys. 1, 4315-4322 (1999)
Leonid V. Yelash, Thomas Kraska
The global phase behavior of binary mixtures of chain molecules: theory and application
https://doi.org/10.1039/a904932k

J. Supercritical Fluids, 16, 1-10 (1999)
Kai Leonhard, Thomas Kraska
An equation of state describing the critical region: extension to high pressure
https://doi.org/10.1016/S0896-8446(99)00017-0

Fluid Phase Equilibria, 162, 115-130 (1999)
Leonid V. Yelash, Thomas Kraska
Investigation of a generalized attraction term of an equation of state and its influence on the phase behaviour
https://doi.org/10.1016/S0378-3812(99)00205-8

Phys. Chem. Chem. Phys. 1, 2449-2455, (1999)
Leonid V. Yelash, Thomas Kraska
Statistical Associating Fluid Theory for chains of attractive hard-spheres: optimized equation of state
https://doi.org/10.1039/a900453j

Phys. Chem. Chem. Phys. 1, 307-311, (1999)
Leonid V. Yelash, Thomas Kraska
On closed-loop liquid-liquid immiscibility
https://doi.org/10.1039/a807049k

J. Chem. Phys. 110, 3079-3084 (1999)
Leonid V. Yelash, Thomas Kraska, Ulrich K. Deiters
Closed-loop critical curves in simple hard-sphere van der Waals-fluid models consistent with the packing fraction limit
https://doi.org/10.1063/1.477904
download pdf here
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Chemical Physics and may be found at the DOI link above. 

Z. Phys. Chem. 211, 159-179 (1999)
Leonid V. Yelash, Thomas Kraska
Co-volume effects on the closed-loop liquid-liquid immiscibility in binary fluid mixtures
https://doi.org/10.1524/zpch.1999.211.Part_2.159

 

1998

Ber. Bunsenges. Phys. Chem. 102, 213-223, (1998)
Leonid V. Yelash, Thomas Kraska
Closed-loops of liquid-liquid immiscibility in binary mixtures of equal sized molecules predicted with a simple theoretical equation of state.
https://doi.org/10.1002/bbpc.19981020212

 

1996

Ind. Eng. Chem. Res. 35, 4727-4737, (1996)
Thomas Kraska, Keith E. Gubbins
Phase equilibria calculations with a modified SAFT equation of state: I) Pure alkanes, alkanols and water.
https://doi.org/10.1021/ie9602320

Ind. Eng. Chem. Res. 35, 4738-4746, (1996)
Thomas Kraska, Keith E. Gubbins
Phase equilibria calculations with a modified SAFT equation of state: II) Binary mixtures of n-alkanes, 1-alkanols and water
https://doi.org/10.1021/ie960233s

Ber. Bunsenges. Phys. Chem. 100, 1318-1327 (1996)
Thomas Kraska
Systematic investigation of the global phase behavior of associating binary fluid mixtures: I. Mixtures containing one self-associating substance. 
https://doi.org/10.1002/bbpc.19961000809

Int. J. Thermophys. 15, 261-281 (1994)
Thomas Kraska, Ulrich K. Deiters
An equation of state for pure fluids describing the critical region. 
https://doi.org/10.1007/BF01441586

J. Chem. Phys. 96, 539-547 (1992)
Thomas Kraska, Ulrich K. Deiters
Systematic investigation of the phase behavior in binary fluid mixtures. II. Calculations based on the Carnahan-Starling-Redlich-Kwong equation of state 
https://doi.org/10.1063/1.462490
download pdf here
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Chemical Physics and may be found at the DOI link above. 

 

Book Chapters

Proceedings of the International Workshop on Complex Systems in Natural and Social Sciences (CSNSS 02) (2003)
A. R. Imre, A. Drozd-Rzoska, T. Kraska, S. J. Rzoska, L. V. Yelash
Liquids Under Absolute Negative Pressure

Supercritical Fluids as Solvents and Reaction Media
G. Brunner (ed.), Elsevier, Amsterdam (2004)
T. Kraska, K. O. Leonhard, J. Jurtzik, D. Tuma, G. M. Schneider
Correlation of the solubility of low-volatile organic compounds in near- and supercritical fluids based on an accurate equation of state

Supercritical Fluids as Solvents and Reaction Media
G. Brunner (ed.), Elsevier, Amsterdam (2004)
L. V. Yelash and T. Kraska
Development of simplified equation of state for molecular fluids and applications for the investigation of supercritical chain molecule solutions and mixtures

Supercritical Fluids as Solvents and Reaction Media
G. Brunner (ed.), Elsevier, Amsterdam (2004)
A. Weber, R. Kümmel, T. Kraska
Investigation and modeling of the gas antisolvent process

Nonlinear Dielectric Phenomena in Complex Liquids, NATO Science Series, Kluwer, Dordrecht
pp. J. Rzoska and V. Zhelezny (eds.) (2004)
A. R. Imre, A. Drozd-Rzoska, T. Kraska, K. Martinas, L. P.N . Rebelo, S. J. Rzoska, Z. P Visak and L.V. Yelash
Phase equilibrium in complex liquids under negative pressure

Soft Matter Under Exogenic Impacts: Fundamentals and Emerging Technologies, NATO Science Series
S. J. Rzoska and V. A. Mazur (eds.) (2006)
B. Fischer, N. Lümmen, T. Kraska
Homogenous nucleation and growth from highly supersaturated vapour by molecular dynamics simulation

Soft Matter Under Exogenic Impacts: Fundamentals and Emerging Technologies, NATO Science Series
S. J. Rzoska and V. A. Mazur (eds.) (2006)
A. R. Imre, A. Drozd-Rzoska, T. Kraska, S. J. Rzoska
Indirect methods to study liquid-liquid miscibility in binary liquids under negative pressure

Nucleation and Atmospheric Aerosols
Eds.: J. Smolik, C. O'Dowd, ISBN 978-80-02-12161-2 (2009) F. Römer, T. Kraska
Formation of pharmaceutical particles by rapid expansion of a supercritical solution investigated by MD simulation

NATO Science Series: Metastable Systems Under Pressure
Eds.: S.J. Rzoska and V.A. Mazur, Springer, pp.271-278 (2010)
A. R. Imre, G. Hazi, T. Kraska
Estimation of the explosive boiling limit of metastable liquids



Miscellaneous 

RRZK-Kompass No. 100, February (2004)
T. Lange, C. Hellweg, B. Fischer, N. Lümmen, R. Rozas, T. Kraska,
Installation and operation of a Beowulf cluster in physical chemistry 

Forschungsbericht Multimedia, pp. 127-131, Universität zu Köln (1997)
Link between research and teaching through the use of new media.